
International Technical Support Organization

SG24-4547-02

Accessing CICS Business Applications
from the World Wide Web

http://www.redbooks.ibm.com

Hanspeter Nagel Steve Longhurst

International Technical Support Organization SG24-4547-02

Accessing CICS Business Applications

March 1998

from the World Wide Web

© Copyright International Business Machines Corporation 1998. All rights reserved
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

Third Edition (March 1998)

This edition applies to the CICS products for use with the OS/2, Windows NT, AIX, OS390 and MVS/ESA operating
systems.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix E,
“Special Notices” on page 231.

Take Note!

Contents

Figures . ix

Tables . xi

Preface . xiii
How This Document Is Organized . xiii
The Team That Wrote This Redbook . xiv

1. and 2. Edition. xiv
3. Edition . xiv

Comments Welcome . xiv

Part 1. Introduction .1

Chapter 1. Introducing the Web .3

Chapter 2. Transaction Processing and the Web .9
2.1 What is a Transaction Program? .9

2.1.1 General Explanation .9
2.1.2 Two-Phase Commit .10
2.1.3 CICS Transaction .10

2.2 User Expectation. .10
2.3 User Interface .11
2.4 Data Integrity .11
2.5 Matters of State .11
2.6 Data Currency. .12
2.7 Getting Started with the Infrastructure .12
2.8 Network Management .12
2.9 The Importance of Being Available .13
2.10 Data Security .13

Chapter 3. Security .15
3.1 TCP/IP Layers .16
3.2 Access Security .16

3.2.1 Firewalls .16
3.2.2 Filters .18
3.2.3 Proxy Servers .18
3.2.4 SOCKS Servers .19
3.2.5 Access Control List Files .19
3.2.6 Logging .20

3.3 Transaction Security .20
3.3.1 Authentication .20
3.3.2 Encryption Techniques .21
3.3.3 Other important Security Terms. .23
3.3.4 Secure Sockets Layer .24
3.3.5 Secure Hypertext Transfer Protocol .25
3.3.6 Pretty Good Privacy .25
3.3.7 Kerberos .25

3.4 Commercial Activities on the Web .26
3.4.1 SecureWeb .26
3.4.2 Internet Keyed Payment Protocol .26
3.4.3 Secure Internet Payment Service .27
© Copyright IBM Corp. 1998 iii

3.4.4 Secure Electronic Payment Protocol . 27
3.4.5 Secure Transaction Technology. 27
3.4.6 Secure Electronic Transaction . 27

3.5 Java Security . 28
3.5.1 Security Implications while Distributing Executable Code. 28
3.5.2 The Java Security Features . 29

Part 2. Programming and Connectivity . 31

Chapter 4. Programming for the Web . 33
4.1 Using Uniform Resource Locators . 33
4.2 Hypertext Transfer Protocol Header Information 35

4.2.1 General Header Fields . 35
4.2.2 Request Header Fields . 36
4.2.3 Response Header Fields . 37
4.2.4 Entity Header Fields . 38

4.3 Common Gateway Interface Scripts. 39
4.3.1 Invoking Common Gateway Interface Scripts 40
4.3.2 Passing Data to Common Gateway Interface Scripts 42

4.4 Internet Connection Application Programming Interface ICAPI 46
4.4.1 The Service Directive. 46

4.5 Java . 47
4.5.1 What Is Java? . 47
4.5.2 Java Applets . 47
4.5.3 Java Applications. 49
4.5.4 Java Beans . 49

4.6 Java Security . 49
4.6.1 Java Security Features . 50
4.6.2 Leaving the Sandbox . 50
4.6.3 The Netscape Capabilities API. 51
4.6.4 Microsoft Internet Explorer Security Zone System 52
4.6.5 The HotJava Security Model . 53
4.6.6 Digital Certificates . 55
4.6.7 Java Application Security . 61
4.6.8 Security Features in Java 1.2. 62
4.6.9 Summary . 62
4.6.10 References . 63

4.7 JavaScript . 63
4.7.1 JavaScript - Java Comparison . 64
4.7.2 Embedding JavaScript into HTML . 64

4.8 Hypertext Markup Language . 66
4.8.1 Forms . 67

4.9 Utility CGIUTILS . 75
4.10 Utility CGIPARSE . 76
4.11 Caching . 76

Chapter 5. Accessing CICS/ESA from the Web . 77
5.1 Connecting CICS to the Internet . 78

5.1.1 EXCI CGI Sample Program . 79
5.1.2 CICS Internet Gateway . 79
5.1.3 CICS Gateway for Java . 80
5.1.4 CICS Web Interface . 80

5.2 CICS Access Overview . 80
iv Accessing CICS Business Applications from the WWW

5.2.1 CICS/ESA direct Web Connection Solutions 81
5.2.2 The CICS Gateway for Java. 84
5.2.3 The CICS Internet Gateway . 89
5.2.4 Other Ways to Access CICS/ESA . 89
5.2.5 CICS Servers. 91

5.3 Designing CICS/ESA Applications for the Web . 91
5.3.1 Accessing CICS/ESA 3270 Applications . 92
5.3.2 HTML Awareness . 92
5.3.3 Using APPC or TCP/IP Sockets to Access CICS/ESA Applications . 93
5.3.4 Using DPL to Access CICS/ESA Applications 94

5.4 Writing CICS/ESA Programs for the Web . 94
5.4.1 Pseudoconversation Initiation . 95
5.4.2 Passing Input Data to the Server . 95
5.4.3 Returning Responses from CICS/ESA . 96
5.4.4 Terminating the Pseudo-conversation . 96
5.4.5 Specifying the Next CICS/ESA Program to Execute. 96
5.4.6 Detecting Interruption to the Pseudo-conversation 96
5.4.7 Data Integrity . 97
5.4.8 Saving Information about the State of Processing 98
5.4.9 Data Conversion . 103

5.5 CICS/ESA Systems Management Considerations 103
5.5.1 Routing of Web Requests . 103
5.5.2 Workload Management . 104
5.5.3 CICS/ESA Security . 104
5.5.4 Logging and Auditing . 106

Part 3. Sample Applications . 107

Chapter 6. TestECI/TestEPI on CICS Gateway for Java 109
6.1 CICS Gateway for Java Scenario . 109
6.2 Configuring the CICS Gateway for Java on MVS 109

6.2.1 Installation . 109
6.2.2 Configuration of the CICS Gateway for Java 112
6.2.3 Installing the DFHJAVA Group. 112
6.2.4 Configuring CICS Connection and Sessions 112
6.2.5 Setting Environment Variables . 112
6.2.6 Environment Variables Used by the CICS Gateway for Java (MVS) 114
6.2.7 Running the CICS Gateway for Java (MVS) 115

6.3 Configuring the CICS Gateway for Java on AIX 116
6.3.1 Installation . 116
6.3.2 Configuration . 117
6.3.3 Starting the CICS Gateway for Java on AIX 118
6.3.4 Stopping the CICS Gateway for Java . 119

6.4 TestECI . 119
6.4.1 Running TestECI . 119

6.5 TestEPI . 121
6.5.1 Running TestEPI . 122

Chapter 7. Connectivity Tester: ECITEST. 125
7.1 What Does ECITEST Do? . 125
7.2 ECITEST Components and Interfaces . 127
7.3 ECITEST Function Description . 129

7.3.1 Invoking an Application-Specific Web Server Extension or Gateway129
v Accessing CICS Business Applications from the WWW

7.3.2 Obtaining User Input from the Web Browser 131
7.3.3 Maintaining Information about the State of Processing. 132
7.3.4 Passing Data to and from CICS . 133
7.3.5 Generating Dynamic HTML Documents . 133
7.3.6 Deleting Information about the State of Processing 134

Chapter 8. A Simple CICS Access Program: CICSWEB 135
8.1 What Does CICSWEB Do? . 135

8.1.1 CICSWEB Object Retrieval Function . 135
8.1.2 CICSWEB Administration Function . 136

8.2 CICSWEB Components and Interfaces . 141
8.3 CICSWEB Function Description. 141

8.3.1 Adding Data to CICS Databases . 142
8.3.2 Using an Extended Logical Unit of Work . 142
8.3.3 Retrieving Data from CICS Databases . 142
8.3.4 Minimizing Network Data Traffic. 143
8.3.5 Using CICS User ID and Password for Validation 143
8.3.6 Generating HTML Directly from a CICS Application 143
8.3.7 Managing Data Conversion . 144

Chapter 9. CICS State Management Program: CICSSTAT 145
9.1 How Is CICSSTAT Invoked? . 145
9.2 What Does CICSSTAT Do? . 145

9.2.1 CICSSTAT Single-Threading . 145
9.2.2 The CICSSTAT Anchor Block . 146
9.2.3 CICSSTAT COMMAREA Structure . 146
9.2.4 Creating a State Block . 147
9.2.5 CICSSTAT Create Function . 148
9.2.6 CICSSTAT Retrieve Function . 148
9.2.7 CICSSTAT Store Function . 148
9.2.8 CICSSTAT Destroy Function . 149

9.3 CICSTAT Routines . 149
9.3.1 CICSSTAT Timeout Processing . 149
9.3.2 CICSSTAT Purge Processing . 149
9.3.3 CICSSTAT Error Handling . 149

9.4 Sample Scenario Using CICSSTAT . 150
9.4.1 Error Handling . 151
9.4.2 Why Use Shared Storage Rather than Temporary Storage? 151

Chapter 10. CICS Sockets Sample . 153
10.1 SOCKTEST Environment. 153

10.1.1 Connectivity Scenario . 153
10.2 What Does SOCKTEST Do? . 153

10.2.1 Generating Dynamic HTML Documents . 154
10.3 SOCKTEST Sample Programs Management . 155

10.3.1 Building the SOCKTEST Sample Programs 155
10.3.2 Running the SOCKTEST Sample Programs. 155

10.4 Information about the State of Processing for SOCKTEST. 155

Appendix A. ECITEST Source Listings .157
A.1 ECITEST.HTML: Login HTML Document for Use with the IBM Internet Connec-
tion Server .157
A.2 ECITEST.HTM: Login HTML Document for Use with GoServe157
A.3 ECITEST.CMD: REXX CGI Script for Use with the IBM Internet Connection Server
vi Accessing CICS Business Applications from the WWW

157
A.4 ECITEST.80: REXX Filter for Use with GoServe .162

Appendix B. CICSWEB Source Listings .167
B.1 CICSWEB.HTML: Login HTML Document for Use with the Domino Go Webserver
167
B.2 CICSWEB.HTM: Login HTML Document for Use with GoServe167
B.3 CICSWEB.CMD: REXX CGI Script for Use with the IBM Internet Connection Server
168
B.4 CICSWEB.80: REXX Filter for Use with GoServe .176
B.5 CICS COBOL Program to Store, Retrieve, and Delete Objects.183
B.6 CICS COBOL Program to List Objects .187
B.7 CICS Data Conversion Table. .191
B.8 VSAM File Definition .192

Appendix C. CICS/ESA State Management Sample193
C.1 REXX CGI Script .193
C.2 COBOL CICS/ESA Web Server Application Program195
C.3 Assembler CICS/ESA State Management Program 206

Appendix D. CICS/ESA Sockets Application Sample 215
D.1 C CGI Script .215

D.1.1 client.c .215
D.1.2 sockets.c .218

D.2 COBOL CICS/ESA Web Server Application Program221
D.3 MVS JCL to Compile COBOL Program .228

Appendix E. Special Notices .231

Appendix F. Related Publications. .233
F.1 International Technical Support Organization Publications233
F.2 Redbooks on CD-ROMs. .233
F.3 Other Publications .233

How To Get ITSO Redbooks . 235
How IBM Employees Can Get ITSO Redbooks .235
How Customers Can Get ITSO Redbooks .235
IBM Redbook Order Form .237

Glossary . 239

List of Abbreviations . 243

Index . 245

ITSO Redbook Evaluation . 249
vii Accessing CICS Business Applications from the WWW

viii Accessing CICS Business Applications from the WWW

Figures

1. TCP/IP Layered Architecture . 16
2. Firewall Protection . 17
3. Using a Proxy Server . 18
4. Using a SOCKS Server . 19
5. Password Protection of Web Documents. 21
6. A Uniform Resource Locator . 34
7. Simple REXX CGI Program . 39
8. Simple C CGI Program . 40
9. GoServe Mapping Code. 41
10. Using the getenv C Function . 43
11. Retrieve OS/2 Environment Variables Using REXX . 44
12. REXX Program to Decode Forms Input . 45
13. CICS ICAPI Overview . 46
14. "Hello World" applet . 48
15. HTML with Applet Tag . 48
16. Netscape Security Request . 52
17. Microsoft Internet Explorer Security . 53
18. HotJava Basic Security . 54
19. HotJava Advanced Security . 55
20. Netscape Certificates Dialog . 56
21. Netscape Import CA Certificates . 57
22. Create a JAR File Signed for Netscape Communicator. 60
23. Create a CAB File Signed for Microsoft Internet Explorer 60
24. Sample of an HTML embedded JavaScript . 65
25. Importing JavaScript code . 65
26. Error checking on JavaScript import function. 66
27. Sample HTML Form. 68
28. REXX CGI Script to Process Form . 69
29. (Part 1 of 3) REXX Program Using Hidden Fields . 70
30. (Part 2 of 3) REXX Program Using Hidden Fields . 71
31. (Part 3 of 3) REXX Program Using Hidden Fields . 72
32. (Part 1 of 3) CGI Script Saving Data on the Web Server 73
33. (Part 2 of 3) CGI Script Saving Data on the Web Server 74
34. (Part 3 of 3) CGI Script Saving Data on the Web Server 75
35. Example of REXX CGI Script Using CGIUTILS . 75
36. Example of REXX CGI Script Using CGIPARSE . 76
37. EXCI CGI Sample Program . 79
38. CICS Internet Gateway . 79
39. CICS Gateway for Java . 80
40. CICS Web Interface . 80
41. Map showing How to Get CICS Transaction Service. 81
42. Accessing CICS/ESA through the CWI . 82
43. Control Flow of a CWI Transaction . 83
44. CICS Gateway for Java . 85
45. External CICS Gateway for Java . 86
46. CICS Gateway for Java on the Same System with CICS Server. 86
47. CICS Gateway for Java on OS/390 . 87
48. Connecting through the CICS ONC RPC Feature . 90
49. Connecting through MQ Series . 91
50. Connecting through TCP/IP for MVS Sockets Interface 93
© Copyright IBM Corp. 1998 ix

51. CICS Pseudo-conversational Processing .95
52. Web Server State Handling. .99
53. Application-Specific State Management .102
54. Generalized State Management .102
55. Connecting through a Firewall .105
56. FTP to MVS. .110
57. oput Command in TSO .110
58. FTP Directly into HFS .111
59. OpenEdition Export Command .113
60. export in a JGate Script. .113
61. TestECI output on MVS .115
62. JCL to run JGate Script on MVS .115
63. Starting JGate as "no login" User .116
64. Stopping JGate with the kill Command .116
65. CICS Gateway for Java Directory Structure on AIX .117
66. Output from JGate on AIX. .118
67. TestECI Structure .119
68. Applet tag for TestECI. .120
69. Output of the File TestECI.html. .121
70. Applet Tag for TestEPI .122
71. Output of the File TestEPI.html .123
72. ECITEST Sample Application: Login Page .125
73. ECITEST Sample Application: Data Entry Initial Display 126
74. ECITEST Sample Application: Data Entry Program Response 127
75. ECITEST Components and Interfaces .128
76. Web to CICS: Web Server Components. .129
77. Triggering ECITEST .130
78. Extract Variables from Forms Using REXX. .132
79. Initialize ECI Call Parameters .133
80. CICSWEB Major Components .136
81. CICSWEB Administration Login Page .137
82. CICSWEB Store HTTP Object Page. .138
83. CICSWEB Delete HTTP Object Page. .139
84. CICSWEB List HTTP Objects Page .140
85. Sample Connectivity Scenario for CICSSTAT .150
86. Sample Connectivity Scenario for SOCKTEST. .153
x Accessing CICS Business Applications from the WWW

Tables

1. Information Available in HTTP General Header . 35
2. Information Available in HTTP Request Header . 36
3. Information Available in HTTP Response Header . 37
4. Information Available in HTTP Entity Header. 38
5. JavaScript - Java Comparison . 64
6. Offerings for Connecting CICS to the Internet . 78
© Copyright IBM Corp. 1998 xi

xii Accessing CICS Business Applications from the WWW

Preface

The advent of the World Wide Web, the availability of powerful and inexpensive
personal computers, and the ready availability of connection to the Internet, led to
explosive growth in Internet usage and in the number of individuals and
organizations with access to it. As a result, many organizations are considering
whether they should provide direct access to their operational systems for
customers and/or clients via the Internet in order to provide better service or gain
competitive advantage.

This document is written primarily for information technology professionals
responsible for designing and managing CICS-based OLTP applications, to help
them make these applications available to users of the Internet and the World
Wide Web. It looks at how this can be done, and at issues such as security and
data integrity that need to be understood when deciding whether to proceed down
this path, and how far to go.

How This Document Is Organized

The document is organized as follows:

 • Part 1, “Introduction” on page 1 introduces some important terms and
concepts from the Internet and World Wide Web, and looks at ways in which
the World Wide Web differs from a traditional CICS OLTP environment. Also
included is information on security in the Internet and World Wide Web
environment.

 • Part 2, “Programming and Connectivity” on page 31 describes what you need
to do when programming to communicate with World Wide Web servers and
browsers. It then discusses how you can connect the World Wide Web
environment to CICS, and the ways in which communicating with the Web can
affect your CICS applications.

 • Part 3, “Sample Applications” on page 107 describes some sample
applications that illustrate many of the issues and techniques discussed in
Part 2, “Programming and Connectivity” on page 31.

This document contains information such as World Wide Web document
addresses that point to specific resources on the Internet. Every effort possible
was made to verify the validity of this type of information as of the date that the
book was sent to publishing. However, s ince the Internet and the World Wide
Web are constantly changing, with information being added, changed, and
deleted daily, it is possible that some of the information resources referenced
by this document may have changed or been deleted.

Notice
© Copyright IBM Corp. 1998 xiii

The Team That Wrote This Redbook

All the editions of this redbook were produced by teams of specialists from
around the world working at the International Technical Support Organization San
Jose Center.

1. and 2. Edition
Guido De Simoni
International Technical Support Organization, San Jose Center

Steve Wall
IBM Hursley, U.K.

David Thrum
IBM Australia

3. Edition
Hanspeter Nagel is an Advisory Systems Engineer at the International Technical
Support Organization, San Jose Center. He writes extensively and teaches IBM
classes worldwide on all areas of Distributed Transaction Systems. Before joining
the ITSO, Hanspeter Nagel worked in the services organization of IBM
Switzerland where he was responsible for DCE, Security and Distributed
Transaction Systems in several customer projects. You can reach him by e-mail
at hnag@us.ibm.com

Steve Longhurst is a software developer working at IBM Hursley for the
CICS/ESA Data Communications group. He is part of the CICS Web Interface
development team and also implemented the MVS port of the CICS Gateway for
Java. Stephen graduated in 1996 from the University of Southampton with skills
in Java, TCP/IP and distributed systems. You can reach him by e-mail at
slong@hursley.ibm.com.

Thanks to the following people for their invaluable contributions to this project:

Susan Malaika
IBM Santa Teresa Lab

Shirly Hentzel
International Technical Support Organization, San Jose Center

Steve Wall
IBM Hursley, U.K.

Eugene Deborin
International Technical Support Organization, San Jose Center

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:
xiv Accessing CICS Business Applications from the WWW

 • Fax the evaluation form found in “ITSO Redbook Evaluation” on page 249 to
the fax number shown on the form.

 • Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com

For IBM Intranet users http://w3.itso.ibm.com

 • Send us a note at the following address:

redbook@us.ibm.com
 xv

xvi Accessing CICS Business Applications from the WWW

Part 1. Introduction
© Copyright IBM Corp. 1998 1

2 Accessing CICS Business Applications from the WWW

Chapter 1. Introducing the Web

In this chapter we introduce some terminology and concepts of the Internet and
World Wide Web (WWW, W3, or simply the Web) that may be unfamiliar if you are
used to working in a traditional online transaction processing (OLTP) environment
such as CICS. To fully appreciate the issues we deal with in the rest of the book,
you should have some familiarity with these subjects.

We do not attempt to explain the terminology and concepts in detail. Using the
Information Super Highway GG24-2499, provides a comprehensive introduction
to the Web for those readers needing additional background information.

The Internet is a worldwide collection of interconnected computer networks that
communicate using the Transmission Control Protocol/Internet Protocol (TCP/IP).
The Internet for data and computers is analogous to the telephone network for
voice–multiple independent networks are connected to allow access from any
network to any other network.

The Internet and TCP/IP provide the infrastructure for a number of facilities and
applications. Since TCP/IP was designed for communication between computers,
rather than between, say, a fixed-function terminal and a host computer, many
TCP/IP applications are structured using a client/server model. Because of
TCP/IP's strong historical roots in UNIX, the server component of these
applications is commonly referred to as a daemon, the UNIX name for
background tasks used to service user, or client, requests.

Some of the more well-known TCP/IP applications are:

Telnet Telnet provides a virtual terminal facility that allows users of one
computer to act as if they were using a terminal connected to another
computer. The telnet client program communicates with the telnet
daemon on the target system to provide the connection and session.

FTP The file transfer protocol FTP allows you to transfer files between
computers, using a connection between an FTP client on the
requesting computer and an FTP server daemon on the destination
system.

Mail The Internet provides electronic mail using the Simple Mail Transfer
Protocol (SMTP) and Post Office Protocol (POP). Most major
electronic mail services provide a gateway to Internet mail. If you have
access to internet mail, you have access to potential E-mail addresses
of many millions of people.

News Internet News, also called Usenet, is a group discussion or
conferencing facility. Many thousands of different news groups cover
almost any subject you can imagine.

Gopher Gopher is a facility that helps you find resources on the Internet.
Gopher presents you with simple character-based menus. Each menu
item either represents another Gopher menu, or can take you directly
to facilities or services such as viewing or downloading a file, or
starting a telnet session. Because Gopher menus point to menus on
other Gopher servers, you can search for resources across multiple
internet systems.
© Copyright IBM Corp. 1998 3

WWW The Web is in some ways similar to Gopher in that it allows you to link
resources spread across multiple machines connected to the Internet.
The Web adds a number of significant enhancements, including an
easy to use graphical user interface (GUI), full hypertext linking rather
then simple menu selection, the ability to display multimedia objects
(pictures, sound and movies) as well as text and a forms capability
that allows two-way communication between the Web browser and the
Web server. In addition, the Web browser can act as a client to a
number of other Internet facilities, including FTP, Gopher, News or
Java, providing a single interface that is all many users will ever need
to use.

The Web provides users with a consistent and simple means of accessing a
variety of media types, and has rapidly developed into a global hypermedia
network. The Web is officially described as a "wide-area hypermedia information
retrieval initiative aiming to give universal access to a large universe of
documents".

The perhaps modest goal of the Web designers was to provide a tool to assist the
advancement of science and education. While it may well achieve this goal, the
Web is also set to revolutionize many other elements of society, including
commerce and government.

The flexibility and ease of use of the Web have directly fuelled the current
exponential growth of the Internet and make it necessary to have the Web as a
means of accessing all applications. The following list introduces some Web
terminology and components with which you need to be familiar in order to
understand the issues involved.

Web browser As with many other Internet facilities, the Web uses a client/server
processing model. The Web browser is the client component.
Examples of Web browsers include Mosaic, Netscape Navigator,
and the Microsoft Internet Explorer. Web browsers are responsible
for formatting and displaying information, interacting with the user,
and invoking external functions, such as telnet, or external viewers
for data types that Web browsers do not directly support.
Web browsers have become the "universal client" for the GUI
workstation environment, in much the same way that the ability to
emulate popular terminals such as the DEC VT100 or IBM 3270
allows connectivity and access to character-based applications on
a wide variety of computers. Web browsers are widely available
for all popular GUI workstation platforms, and are inexpensive.

Web servers Are responsible for servicing requests for information from Web
browsers. The information can be a file retrieved from the server’s
local disk, or it can be generated by a program called by the server
to perform a specific application function.
There are a number of public-domain Web servers available for a
variety of platforms including most UNIX variants, as well as
personal computer environments such as OS/2 Warp and
Windows NT. Some well-known public domain servers are CERN,
NCSA httpd, and Apache servers (available on a variety of UNIX
and non-UNIX platforms).
IBM has released the Domino Go Webserver 4.6.1. Domino Go
Webserver is a scalable, high-performance Web server that is
4 Accessing CICS Business Applications from the WWW

available on OS/390 and on many workstation platforms (AIX,
Solaris, HP-UX, OS/2 Warp, Windows NT, and Windows 95). It
brings you state-of-the-art security, site indexing capabilities,
advanced server statistics reporting, and relational database
connectivity with Net.Data
Domino Go Web server is the successor to IBM’s well known
Internet Connection Secure Server (ICSS).

HTTP The Hypertext Transfer Protocol (HTTP) is the protocol that a Web
browser uses to communicate with a Web server.

HTML The Hypertext Markup Language (HTML) defines the format and
contents of documents sent from the Web server to a Web
browser for formatting and display. HTML uses tags to specify
formatting and document structure and identify hypertext links. It is
similar to the Standard Generalized Markup Language (SGML),
the ISO standard for specifying document format and structure.

URL The Uniform Resource Locator, or URL, is a standard naming
convention for identifying a resource such as an HTML document,
Gopher menu, or FTP file transfer. You use URLs within HTML
documents to define hypertext links to other documents or
resources.

Forms The initial goal of the Web designers was to provide a mechanism
to allow you to find and display information on the Internet. In
other words, the information flow was essentially one-way (from
Web server to Web browser). Subsequently, a forms function has
been added to HTML that allows you to specify input fields that
enable Web browsers to be used to send data to the server. This
function allows the Web browser to be used to access many
different types of applications, including those that run on OLTP
systems such as CICS.

CGI The Common Gateway Interface (CGI) is a means of allowing a
Web server to execute a program that you provide, rather than
retrieving a file. A number of popular Web servers support the
CGI. For some applications, for example displaying information
from a database, you must do more than simply retrieve an HTML
document from a disk and send it to the Web browser. For those
applications, the Web server needs to call a program to generate
the HTML to be displayed. Most Web servers provide a
mechanism to do this. The CGI is not the only such interface,
however.

XML The Extensible Markup Language (XML) describes a class of data
objects called XML documents which are stored on computers,
and partially describes the behavior of programs that process
these objects. XML is an application profile or restricted form of
SGML. The goal of XML is to enable generic SGML to be served,
received, and processed on the Web in the way that is now
possible with HTML. XML has been designed for ease of
implementation and for interoperability with both SGML and
HTML.

CORBA The Common Object Request Broker Architecture (CORBA) allows
applications to communicate with one another no matter where
Introducing the Web 5

they are located or who has designed them. CORBA 1.1 was
introduced in 1991 by the Object Management Group (OMG) and
defined the Interface Definition Language (IDL) and the
Application Programming Interfaces (API) that enable client/server
object interaction within a specific implementation of an Object
Request Broker (ORB). CORBA 2.0, adopted in December of
1994, defines true interoperability by specifying how ORBs from
different vendors can interoperate. IBM’s Component Broker
http://www.software.ibm.com/ad/cb/ is a very good example of a
CORBA implementation.

Java Java is an object oriented programming language very similar to
C++. The main strength of the Java programming language is that
it is platform independent and easy to distribute over the Internet.
Java compiled code runs on every computer, regardless of its
operating system, that supports the Java virtual machine. This
makes Java a very popular programming language for Web
programming of today.
Java invented several new terms. These are the most important
you for you to know:

Applet: A Java applet is a program written in Java that is
automatically downloadable and executable by a browser or
network computer.

JavaBeans: Are portable, platform-independent component
models written in Java. Beans are Java classes that can be
manipulated in a Visual builder tool and composed together into
an application. Any Java class that adheres to certain properties
and event-interface conventions can be a JavaBean.

Enterprise JavaBeans: Defines a component model for the
development and deployment of Java applications based on a
multitier, distributed object architecture. A component model
defines an environment to support reusable application
components. Components are previously developed pieces of
application code that can be assembled into working application
systems. Enterprise JavaBeans extends the JavaBeans
component model to support server components.

Server components: Are application components that run on a
server. In a multitier application architecture, most of an
application's logic is moved from the client to one or more servers.
A server component model simplifies the process of moving the
logic to the server. The component model implements a set of
automatic services to manage the component.

JVM: A Java Virtual Machine (JVM)JVM is an abstract computer
instruction set. It functions like a real computer with instruction set
and memory areas. The platform-specific implementation of JVM
makes Java platform and operating system independent. JVM is
often mentioned as the Java runtime environment and, as of
today, is implemented within all major Web browsers.
6 Accessing CICS Business Applications from the WWW

RMI: Remote Method Invocation (RMI) allows you to write
distributed objects using Java. RMI enables the programmer to
create distributed Java-to-Java applications, in which the methods
of remote Java objects can be invoked from other Java virtual
machines, possibly on different hosts. At the most basic level, RMI
is Java’s remote procedure call (RPC) mechanism.

Now that you are familiar with the basics of the Web, you can look at some of the
similarities and differences between the characteristics of typical Web
applications and traditional OLTP applications that we discuss in Chapter 2,
“Transaction Processing and the Web” on page 9.
Introducing the Web 7

8 Accessing CICS Business Applications from the WWW

Chapter 2. Transaction Processing and the Web

In this chapter, we look at some of the differences between a Web environment
and an OLTP environment as they typically are today. You should be aware of
these differences when planning to use the Web as a front end for OLTP
applications.

You can easily understand why these differences exist when you consider why
each technology was originally developed. The Web is designed to allow you to
easily locate and read documents and other information that might be present on
a system anywhere on the Internet. OLTP systems are designed to provide a
highly reliable means to read and update centrally managed databases on which
organizations depend for their daily operation.

There are also, however, some important similarities between Web servers and
traditional transaction monitors:

 • Both use standard data streams between the client and server–HTTP/HTML
for Web servers, IBM 3270/DEC VT series for OLTP.

 • Both schedule and process short repetitive pieces of work on behalf of many
users accessing shared data concurrently.

 • In both cases, the application is running on the server, while the client is
dedicated to presentation.

As we move forward and start to use the Web to access traditional OLTP
applications, the challenge is to combine the ease of use and flexibility of the
Web with the robustness of the traditional OLTP environment.

2.1 What is a Transaction Program?

The term transaction is used in different ways. We give you first a more general
understanding of the term transaction in the computing industry followed by some
CICS-specific definitions.

2.1.1 General Explanation
A transaction program performs one or more functions typically on one or more
shared databases. The transaction program includes a workflow control function
that moves the request message from the requestor to the appropriate
application program. If more than one application is needed, this workflow control
function tracks the state of the request as it moves between applications. Each
application typically accesses a database system that manages shared data. In
turn, all these functions use the operating system underneath.

Transaction programs perform read and update requests to servers such as
databases and files. These requests are grouped into transactions.

Transactions have four important properties:

 • Atomicity: A transaction executes completely or not.

 • Consistency: A transaction preserves the internal consistency of the
database.
© Copyright IBM Corp. 1998 9

 • Isolation: Although transactions may run concurrently, each transaction is
executing alone.

 • Durability: The transaction’s results will not be lost in the case of a failure.

2.1.2 Two-Phase Commit
When a program updates data across more than one system, the atomicity
property must be preserved, which means that either all participating systems
durably do the updates or none of them do. Since all systems involved in a
transaction may work independently, this is a challenging process. The
two-phase commit protocol has been developed to solve this problem. Two-phase
commit is coordinated by a special program called the transaction manager. The
transaction manager is primarily a bookkeeper that writes every state of the
transaction down in order to ensure atomicity of the involved recoverable
resources. But how does that all work? During phase 1, the prepare phase, all
recoverable resources touched by a program are updated but the physical
updates are protected from other programs by locks. The transaction manager
records all resource states on to a disk log. If all recoverable resources have
completed their updates, the transaction manager proceeds to the second phase,
notifying all resources of the success of the transaction. At this point, the
recoverable resource managers release their locks and enable other programs to
access the updated data. Now, the recoverable resource managers notify the
transaction manager of the successful lock removal and the transaction manager
returns the success back message to the application. If at any time something
breaks before removing the locks, the transaction manager proceeds with a
rollback procedure which brings all recoverable resources back to their original
states.

2.1.3 CICS Transaction
The terminology of a CICS transaction differs slightly from the explanation above.
Two-phase commit is the protocol observed when taking a synch point in a CICS
Unit of Work UOW. A UOW is a sequence of processing actions, such as
database changes, that must be completed before any of the individual actions
performed by the transaction can be regarded as committed. After changes are
committed, by successful completion of the UOW and recording of the synch
point on the system log, they become durable and are not backed out in the event
of a subsequent failure. A transaction program uses synch point (synchronization
point) to split the actions into logically separate groups called UOWs. If failure
occurs after a synch point but before the transaction program has been
completed, only changes made since the most recent synch point are backed out.
This leads to the fact that UOWs must be entirely logically independent, not
merely with regard to protected resources, but also with regard to the execution
logic.

2.2 User Expectation

While using the Web, you are typically searching for information. You might be
looking for a specific piece of information, or just looking to see what is there. If
you select a hypertext link, and it is not available, or the content of the link is not
useful, you simply look elsewhere for something that better meets your needs.
10 Accessing CICS Business Applications from the WWW

When using an OLTP system, you are normally doing specific functions required
to perform tasks that are part of your job. If a particular function does not work,
you cannot successfully complete a task that is part of your job.

Clearly, the OLTP user has a much higher level of expectation about the
consistency of system behavior and its reliability.

2.3 User Interface

Web browsers provide a graphical user interface that is easy to use and intuitive.
You can display both large and small documents. If the document is larger than
the current size of your Web browser window, you can easily scroll backward and
forward through the document.

OLTP systems still often use character-based fixed function display terminals.
The user interface is typically optimized for efficient use by experienced users.
Screen layouts are constrained by the number of rows and columns that the
terminal can display. Where more data must be displayed than can fit on a
screen, you may need to issue additional transactions to retrieve and display the
additional data.

2.4 Data Integrity

The Web was originally designed to allow you to retrieve and view documents
available on the Web. In a read-only environment, you do not need to be
concerned about recovery from failures when updating data. Consequently, Web
servers do not provide facilities related to the integrity of data (HTML documents)
that they access.

OLTP systems, in contrast, take responsibility for the physical and logical integrity
of the data they manage, using facilities such as logging, transaction backout,
and deadlock detection, either directly or in cooperation with database
management systems.

OLTP systems can provide end-to-end recovery, ensuring that the user’s terminal
has successfully received and displayed the transaction response before
database updates are committed. Web-based applications typically end before
the Web server attempts to send a response to the Web browser. They have no
way to tell whether the response arrived successfully.

2.5 Matters of State

In a transaction processing environment, a business function can consist of
several related transactions that you perform in a particular logical sequence.
The application therefore needs knowledge of the current state of processing
within the logical business function that is being performed, and the ability to
distinguish between different users performing the same tasks at the same time.

When you use a Web browser, each time you select a new hypertext link, you
could be accessing a different Web server. The Web server itself is stateless; it
treats each request separately and independently, and has no concept that a
series of user interactions with the system can be related and make up a larger
logical function. If you need to maintain information about the state of processing
Transaction Processing and the Web 11

in an application using the Web, you need either to maintain information about
the state of processing with the Web browser, or maintain it on the server side.

OLTP systems, on the other hand, do understand state, and provide facilities to
assist you to keep track of state within your applications. CICS, for example,
allows one transaction to specify which transaction is to process the next input
transaction from a user, and provides facilities such as the CICS COMMAREA
and temporary storage queues to allow you to easily maintain state information
and pass it from transaction to transaction.

2.6 Data Currency

When you display a document with a Web browser, you may retrieve the
document directly from the server, but there are situations where you may not.
Many Web browsers allow you to specify that pages and pictures are to be
cached within your workstation so that objects do not need to be fetched again
when you redisplay a page that you have looked at before. Similarly, if you are
accessing the Web through a caching proxy gateway server, the page you display
can be from the proxy gateway rather than from the server where the original
document was stored, and can be an older version of that document. For
additional information on firewalls and proxy gateways, see 3.2.1, “Firewalls” on
page 16, and 3.2.3, “Proxy Servers” on page 18.

OLTP systems, on the other hand, work closely with database management
systems to ensure that data presented to the user is current and accurate. When
a user attempts to access data that is being updated, the OLTP system ensures
that the data update is successfully completed and committed before sending it.

2.7 Getting Started with the Infrastructure

You can set up a Web site in a matter of hours with as little as a personal
computer, modem, and connection to an Internet service provider.

It is not quite so easy to implement a traditional OLTP environment. Among other
things, you probably need to:

 • Select and install the hardware and software environment.
 • Acquire or develop an application.
 • Design and build a transaction processing network.
 • Design and implement operational procedures.
 • Define backup and recovery strategy and procedures.

2.8 Network Management

When you click on a hypertext link in your Web browser, you could be attempting
to go anywhere in the world, to somewhere that does not yet exist, or does not
exist any more. The route to the location can cause your request and its reply
travel to through a number of intervening networks, all independent and
separately managed. Mostly you get the response that you expect, but
sometimes you do not. When you do not, there is probably not much you can do
about it, because there may be no easy way to tell whether the problem is with
the destination Web server, or one of the intervening networks through which
your request must pass.
12 Accessing CICS Business Applications from the WWW

When you enter a transaction in an OLTP system, in contrast, your terminal is
normally connected directly to that OLTP system, and all the transactions that
you enter are directed to that system for processing. Many OLTP systems use
dedicated private communication networks that are centrally managed along with
the OLTP system itself. When a problem occurs, there is normally a help desk or
similar function identified that you can contact to take responsibility for identifying
and remedying any problem that has occurred.

2.9 The Importance of Being Available

Internet usage has changed dramatically during the past two years . In an earlier
stage, the Internet was used almost exclusively as a huge read-only data source.
Today, e-commerce (an acronym for business done through electronic media) is
dominating the usage and further development of the Internet. The transition from
a read-only data source to an interactive e-commerce complex has a major
impact to the question of the importance of being available. Having an
e-commerce Web server not available has the same impact as having a major
store on a Main street unintentionaly closed.

OLTP systems such as CICS are designed to run mission-critical applications and
include support for high availability or load balancing. OLTP systems are thus a
perfect match for today’s need of e-commerce Web applications.

2.10 Data Security

When you place information on the Web or the Internet in general, you are
placing it in an environment that you must regard as insecure. OLTP systems, on
the other hand, are often built on private networks where you can more easily
guard the privacy of your data. As a result, today’s encryption mechanisms used
in Internet applications are much more advanced than those used by traditional
OLTP applications.

Much work is still going on to build security facilities into the Internet and the Web
so that you can safely use them for applications with stringent security
requirements. See Chapter 3, “Security” on page 15 for a discussion of security
issues and activities related to the Internet and the Web.
Transaction Processing and the Web 13

14 Accessing CICS Business Applications from the WWW

Chapter 3. Security

Of all the hot topics that arise when the Internet is discussed, security is the one
that seems to provoke most discussion.

The Internet is an inherently insecure network. Unless you take specific
measures to protect it, sensitive information such as credit card numbers or
personal data is transmitted across the Internet, on networks over which you
have no control, in a form that can easily be accessed by unauthorized users.

You have to decide whether the advantages to be gained from connecting your
network to the Internet outweigh the risks. There are various tools and services
that you can use to safeguard your own "trusted" network from the"untrusted"
Internet.

The most secure option is, of course, not to connect your network to the Internet.
However, with the World Wide Web increasingly becoming a focus for commercial
activity, businesses that do not connect run the risk of conceding a competitive
advantage to those businesses that do.

Our intention in this chapter is to highlight the security issues that arise when you
connect to the Internet in general, and the Web in particular, and to provide
guidelines to help you determine the level of security you require on your system.
We also provide references and URLs pointing to documents giving more
detailed information on the different aspects of security.

For a good introduction to security on the Internet, we recommend that you read
at least Chapter 1 of the user’s guide IBM eNetwork Firewall. You can find a
Portable Document Format (PDF) version of this book on:

http://www.ics.raleigh.ibm.com/firewall/support.htm

See also the following URLs:

http://www.ics.raleigh.ibm.com/firewall/
http://www.alw.nih.gov/Security/security.html
http://www.semper.org/sirene/outsideworld/security.html
http://www.cert.org/

Before allowing Internet users access to your CICS system, you must perform a
risk assessment on your own network and resources to identify the level of
security you require. Some users, such as academic institutions, want their
system to be as open as possible, and so have minimal security in place. Others,
for example, financial institutions, want their resources to be as secure as
possible.

You should use the security policy currently in place on your CICS system as the
starting point for a review of your security requirements in the light of the new
threat posed by the Internet. Some of the questions you should consider when
deciding on your new security policy are:

 • Will clients be required to log on to the Web server? If so, will they have to log
on each time they make a request?

 • Will clients have to use a personal identification number (PIN)?

 • Will some or all of the data transmitted need to be encrypted?
© Copyright IBM Corp. 1998 15

 • Do I want to restrict access to certain resources?

 • Do I want to police only inbound traffic, or both inbound and outbound?

 • Do I want the configuration of my network to be visible to the Internet?

 • Do I want to log resources accessed by internal and external users?

 • Do I want to restrict access to my system to specific times?

Assuming that you require some level of security for your network, you have a
wide range of measures that you can take to help you implement your chosen
security policy. These measures can be divided into two categories:

Access securityYou need to protect your computers, memory, disk, printers, and
other computing equipment from unauthorized use.

Transaction securityCommercial Internet applications require a means of
exchanging sensitive information, such as credit card
numbers, without exposing that information to unauthorized
parties.

3.1 TCP/IP Layers

Before going into security in more detail, we take a brief high-level look at the
TCP/IP architecture on which the Internet is built. TCP/IP is a layered
architecture, as shown in Figure 1. Different approaches to security operate at
different layers in the architecture. Some approaches, such as S-HTTP (see
3.3.5, “Secure Hypertext Transfer Protocol” on page 25) operate at the
application layer, others such as firewalls (see 3.2.1, “Firewalls” on page 16)
operate at the IP layer.

Figure 1. TCP/IP Layered Architecture

3.2 Access Security

You have at your disposal a variety of ways to limit the exposure of your hardware
and software resources to unauthorized users. Below we discuss firewalls, filters,
proxy servers, SOCKS (socket secure) servers, access control list files, and
logging.

3.2.1 Firewalls
A firewall performs two very simple functions:
16 Accessing CICS Business Applications from the WWW

 • It prevents unauthorized traffic between a trusted network and an untrusted
network.

 • It allows authorized traffic to flow between a trusted network and an untrusted
network.

Figure 2 shows how a firewall fits between secure and unsecure networks.

Figure 2. Firewall Protection

The machines on the trusted network shielded by the firewall are said to be inside
the firewall; those on the untrusted network are outside the firewall. The firewall
allows users inside the firewall to access authorized resources outside the
firewall without compromising data and other resources belonging to the trusted
network. The firewall prevents users outside the firewall from compromising or
attacking the trusted network.

A firewall is not one specific piece of software or hardware. It is a bundle of
software utilities, and a suggested network configuration, which combine to
provide protection to your trusted network.

The firewall uses the following methods to control access between the trusted
network and the Internet:

 • Filters

 • Proxy servers

 • SOCKS servers.

The way in which these services are used varies greatly from one implementation
to the next. However, here some features of a good firewall design:

 • Anything not explicitly permitted should default to "denied".

 • Keep things simple. The more complex the implementation, the greater the
likelihood of bugs that present opportunities to hackers.

 • Run your firewall on a dedicated machine. Do not run other applications on
that machine.

 • Your firewall machine should be physically secure.

 • Log everything so that you have a record of what has been accessed and by
whom.
Security 17

We suggest that you refer to the following related publications for a more detailed
description of the function of firewalls.

 • Trusted Information Systems Inc.

http://www.tis.com/Home/NetworkSecurity/Firewalls/Firewalls.html

 • Building a Firewall With the NetSP Secured Network Gateway

 • Using the Information Super Highway

3.2.2 Filters
Filters analyze data passed to the firewall on which they are running and decide
whether or not that data should be allowed to continue on to its destination.
Filters act either on the packets flowing across the network or at the transport
layer, where connections to particular Internet Protocol (IP) addresses, or ports,
can be prevented. Filters can operate on both data flowing into the trusted
network and data flowing out of the trusted network.

For more details about the various kinds of filters see Using the Information
Super Highway. For a sample implementation of filters see Building a Firewall
With the NetSP Secured Network Gateway.

3.2.3 Proxy Servers
Webster’s dictionary defines a proxy as "an authorized agent for another". Proxy
servers are exactly that. They are secure servers running inside a firewall. They
are authorized to make requests on behalf of another machine in the network that
is itself not permitted to access resources outside the trusted network. In effect
the proxy server is a gateway through which data passing between the trusted
network and the untrusted network must flow, as shown in Figure 3.

Figure 3. Using a Proxy Server

The proxy to be used is defined when the Web browser is configured. Other than
that, the existence of the proxy is transparent to the Web browser inside the
firewall. As far as the Web server outside the firewall is concerned, the proxy
server is the Web browser. The use of a proxy therefore hides the configuration of
the network inside the firewall from prying eyes.

Proxy servers operate at the TCP/IP application layer, and are application
specific. For example, a proxy Web server provides proxy services on behalf of
Web browsers, but does not provide proxy services for telnet clients.

Proxy Web servers can improve the performance of the network by caching
frequently requested data. They do not have to send a request across the
network each time the data is requested by a local Web browser; they can simply
retrieve it from local storage.
18 Accessing CICS Business Applications from the WWW

For a more detailed discussion of the implementation of proxies see Using the
Information Super Highway, and Managing Internet Information Services.

3.2.4 SOCKS Servers
SOCKS (Socket Secure) servers perform a similar function to proxy servers but in
a different way.

SOCKS is a protocol that relays TCP sessions at a firewall host to allow
applications transparent access through the firewall. SOCKS servers operate at a
lower layer than proxy servers, at the transport layer, and can be used for many
different services, such as telnet, FTP, gopher, and the Web. Access control using
user ID and password can be applied at the beginning of each TCP session. After
that, the server simply relays the data between the client and the application
server, incurring minimum processing overhead. Figure 4 shows how you can use
a SOCKS server to provide controlled access for your users to the Internet.

Figure 4. Using a SOCKS Server

Client programs must first be made socket secure by undergoing some minor
changes and being compiled and linked using the SOCKS library. SOCKS
servers are smaller and more efficient than proxy servers. Many new Internet
applications now come supplied with socket-secure versions built into the
product.

Because SOCKS servers are application-independent, they do not provide
application-specific functions (for example, proxy Web server caching) that proxy
servers can provide.

SOCKS code and documentation are available from the following FTP site:

ftp://ftp.nec.com/pub/security/socks.cstc

3.2.5 Access Control List Files
Access control list (ACL) files contain information that can be used by the Web
server to identify which users have access to which files. Each directory in a file
structure can have its own ACL.

ACLs are the Conseil Europeen pour la Recherche Nucleaire (CERN) Web server
implementation of access controls. The National Center of Supercomputer
Applications (NCSA) Web server equivalent is the access control file (ACF).

For more details about implementing ACLs see Using the Information Super
Highway.
Security 19

For an explanation of the two methods of server access protection, see Spinning
the Web.

3.2.6 Logging
Logging provides a level of security by the simple expedient of recording any
activity involving the integrity of your trusted network. When a user from outside
your trusted network asks for access to resources inside the trusted network or a
trusted user accesses resources outside the trusted network, you should record:

Origin of the request

Time of the request

Destination of the request

Whether it was authorized or not

If authorized, the resources accessed during execution of the request

When the request ended.

With accurate logging, the network administrator can trace how a security
exposure occurred, and may be able to prevent it from happening again.

Logging should not be a new concept for those familiar with CICS and other
OLTP systems.

3.3 Transaction Security

There are two aspects to transaction security:

 • Authentication. For some users of the Web (in electronic commerce, for
example) it is important that users authenticate themselves to Web servers,
that Web servers authenticate themselves to users, or that both authenticate
to each other. Whatever the form of authentication, it must not be easily
compromised.

 • Encryption. For applications in which Web clients and servers exchange
sensitive information, such as user ID and password pairs, credit card details,
or employee records, eavesdropping must be prevented through appropriate
cryptographic techniques.

We look briefly at two of the security packages that have been around for a while
(see 3.3.6, “Pretty Good Privacy” on page 25 and 3.3.7, “Kerberos” on page 25),
and at two transaction security standards that are likely to become integral parts
of a future integrated security solution for the Web: secure HTTP (see 3.3.5,
“Secure Hypertext Transfer Protocol” on page 25), and the secure sockets layer
(SSL) (see 3.3.4, “Secure Sockets Layer” on page 24).

3.3.1 Authentication
User IDs and passwords are the most obvious way for a Web server to
authenticate data received from a Web browser. You can set up your Web server
to control access to resources at the directory level on the server, and require
users to provide a valid user ID and password before accessing these resources.
20 Accessing CICS Business Applications from the WWW

The HTTP protocol allows Web browsers and servers to exchange password and
user ID information by the use of special HTTP headers. For a discussion of the
current HTTP authorization architecture, see the following URL:

http://www.w3.org/hypertext/WWW/Protocols/HTTP/HTRQ_Headers.html

Figure 5 shows the basic Web authorization flows.

Figure 5. Password Protection of Web Documents

The sequence is as follows:

1. Web browser sends request for document to Web server for the first time with
no authorization header.

2. Web server sends back the response that the authorization code is invalid.

3. Web browser retrieves user ID and password information (if known), or
prompts user to supply it, and sends new request including user ID and
password pair in HTTP authorization header.

4. If user ID and password are valid, Web server returns the requested
document, or else returns the response that the authorization code is invalid.

We do not recommend the basic level of authorization for anyone who is
concerned about security. It merely encodes the user ID and password pair rather
than using encryption, making it only slightly more secure than sending user ID
and password in clear text.

The proposed standard allows for public key encryption of the user ID and
password (and optionally all data). Two of the security schemes that might use
the proposed public key standard are Kerberos and Pretty Good Privacy (PGP).

3.3.2 Encryption Techniques
User IDs and confidential passwords are fine, but the passwords do not remain
confidential for long if they are sent across the network in clear text for anyone to
see. Cryptographic protocolls allows the transformation, or scrambling, of all or
only part of the data to be send into an unreadable format using a mathematical
algorithm. These encrypted messages are decrypted using a secret key by the
recipient of the message. There are three encryption schemes:

 • Symmetric Key Encryption

 • Public Key

 • Secure Hash Function
Security 21

Symmetric Key
In the symmetric key scheme, both parties share the same secret key, which they
do not divulge to others. They are the only parties able to encrypt and decrypt
communications between them. Data which are encrypted with a secret key can
only be decrypted with the same secret key.

Because encription and decription is always done with the same key, this is the
best performing encryption technique. However, the fact that the keys must be
kept secret, raises one of the main implementation difficulties with symmetric key
systems. Since both keys must be kept strictly secret, the key distribution In a
many-to-many environment (establishing a symmetric relationship between each
pair of communicating partners) requires the exchange of a number of keys which
quickly becomes unmanageable. A symmetric key scheme also needs to change
keys frequently; otherwise, a hacker has unlimited time to crack the secret key.
As a result, a special infrastructure is needed, as for example provided with
DCE/Kerberos, to properly apply symmetric key techniques.

The Data Encryption Standard (DES) is the standard Federal secret-key
algorithm. It is the most widely used commercial cryptographic algorithm in the
world based on a symmetrical key scheme. DES has a long history, in the course
of which no weaknesses have been discovered that would permit anything other
than exhaustive attacks to discover keys by brute force. Thus, an attacker must
devote a greath deal of time or resources to decipher data without the key.

The strength of DES relies on two factors. First, the algorithm itself is public and
has been widely tested. Second, the strength of the algorithm increases
according to the length of the keys used. The increase in strength is exponential,
not linear.

Public Key
In the public key scheme, encryption involves two different keys; the public key
and the private key. The key owner maintains his or her private key secretly and
gives the public key to other users, enabling them to exchange encrypted
messages with the key owner. Data encrypted with a public key can be decrypted
only with the corresponding private key. A message that has been encrypted with
a public key can be decrypted with its corresponding private key, but not with the
same public key used to encrypt it.

What gives public key systems such potential is that the public key can be safely
published without compromising the security of the data encrypted under it. This
is because there is a complex mathematical relation between the public and
private keys. For example,

1. Anne and Frank have both published their public keys to each other.

2. Frank wants to send Anne a secret message. To do so he takes her public key
and encrypts the message before sending it to Anne.

3. Anne receives the message from Frank. She detects that the message is
encrypted. Therfor she takes her private key and decrypts Frank’s message.

When this is so easy, why doesn’t everybody use this technique? As of today, all
public key systems have one major disadvantage over symmetric key systems
like DES. Encrypting small sets of data is okay, but when large datasets have to
be crypted, this technique is to slow.
22 Accessing CICS Business Applications from the WWW

Like firewalls, encryption and cryptography are the subjects of much discussion
and academic research. We do not intend to say much more, other than to point
you to some useful URLs:

 • Some useful pointers are given in:

http://www.yahoo.com/Computers/Security_and_Encryption
http://www.semper.org/sirene/outsideworld/security.html

 • An introduction to the U.S. legal issues is presented in:

http://info.acm.org/REPORTS/ACM_CRYPTO_STUDY/_WEB/contents.html

The quality of the encryption which the industry can provide is limited by U.S.
export requirements that restrict the length of the encryption keys be used in
commercial products which might be exported outside the U.S. As long as this
situation remains the same, it is impossible to make any encryption totally secure.
The best encryption that even the newest commercial security packages can
provide is not unbreakable if the hacker has enough time and computer power.
However, commercial encryption can raise the cost in time and computing power
required to break a code until it is worth much more than the potential financial
gain to the code breaker.

3.3.3 Other important Security Terms
There are many terms used around cryptography. In the following we concentrate
on the terms that seem most important today. For more detailed reading see:

http://www.semper.org/sirene/outsideworld/security.html

Secure Hash Function
A hash function is a computation that takes a variable-size input and returns a
fixed-size string, called the hash value. A secure hash function is a one-way
process, also called a message-digest function, whose result is a message
digest. It is impossible, or at least extremly difficult to reconstruct the original data
from the hashed result. The hashed result is not predictable. With a message
digest, a receiver can always check whether a message has been altered or not.
You can think of a message digest as a "digital fingerprint" of the larger
document. Implementations of well-known secure hash functions are MD4 and
MD5.

Digital Signature
A digital signature is a mechanism that associates data with the owner of a
particular private key. The digital signature for a message is created by hashing
the message to produce a message digest. This message digest is then
encrypted with the private key of the individual sending the message. The result
then becomes the digital signature. When the message is received, the recipient
decrypts the digital signature with the public key of the sender. The message
digest is then calculated from the received message and compared with the
decrypted one. If the two match, then the message has not been tampered with.
By using the public key of the sender to verify the message, we can be sure that
the message was encoded by the private key known only to the sender.

Digital Certificates
These certificates are digital documents attesting to the binding of a public key to
an individual or other entity. They allow verification of the claim that a given public
Security 23

key does in fact belong to a given individual. Certificates help prevent someone
from using a faked key to impersonate someone else. In their simplest form,
certificates contain a public key and a name. As commonly used, they also
contain the expiration date of the key, the name of the certifying authority that
issued the certificate, the serial number of the certificate, and perhaps other
information. Most important, the digital certificate contains the digital signature of
the certificate issuer.

Certification Authority
Certificates are issued by a Certification Authority (CA), which can be any trusted
central administration willing to vouch for the identities of those to whom it issues
certificates. In order to prevent forged certificates, the CA’s public key must be
trustworthy. A CA must either publicize its public key or provide a certificate from
a higher-level CA attesting to the validity of its public key. It is essential that the
pivate key of a CA be kept absolutely secret. Otherwise, all issued certificates are
compromised.

Digital Envelope
A digital envelope is a special protocol that combines the strength of the public
key method with the best of the symmetric key method. RSA invented this
protocol known as the RSA Digital Envelop. Following is an example how the
RSA Digital Envelop works:

Suppose Alice wishes to send an encrypted message to Bob. She first encrypts
the message with DES, using a randomly chosen DES key. Then she looks up
Bob’s public key and uses it to encrypt the DES key. The DES-encrypted
message and the RSA-encrypted DES key together form the RSA digital envelop
and are sent to Bob. Upon receiving the digital envelop, Bob decrypts the DES
key with his private key, then uses the DES key to decrypt the message itself.

This combines the easy key management of the public key methode with the high
performance of DES encryption.

3.3.4 Secure Sockets Layer
SSL is a transport-layer security mechanism developed by Netscape
Communications Corporation. It makes the TCP/IP connection between the Web
browser and the Web server secure, that is, any data flowing over that connection
is safe. Like the SOCKS protocol used in firewalls, SSL sits below the application
layer at the transport layer, so it can be used by a variety of TCP/IP applications
such as FTP and telnet, not just for the Web.

SSL has architected flows that allow:

 • Clients to authenticate the server

 • Servers to authenticate the client

 • Negotiation of an encryption algorithm and session key

 • Encryption of some or all data passed between client and server.

For the full specification of the SSL protocol, see the following URL:

http://www.netscape.com/newsref/std/SSL.html
24 Accessing CICS Business Applications from the WWW

The IBM Internet Connection Secure Server for AIX and OS/2 Warp are Web
servers that support SSL. The IBM Internet Connection Secure WebExplorer for
OS/2 Warp is a Web browser that supports SSL.

3.3.5 Secure Hypertext Transfer Protocol
Secure HTTP (S-HTTP) is a secure message-oriented communication protocol
designed for use in conjunction with HTTP. It is designed to coexist with HTTP’s
messaging model and to be easily integrated with HTTP applications. Several
cryptographic message format standards may be incorporated into S-HTTP
clients and servers

S-HTTP is being proposed to the Internet Engineering Task Force (IETF) as a
standard for the Internet. It was written by Enterprise Integration Technologies
(EIT). Unlike SSL, which can be used for a variety of Internet applications, beside
the Web, S-HTTP operates at the TCP/IP application layer and is Web-specific. It
provides the following services:

Signature

Authentication

Encryption

Any data flowing between the Web browser and the Web server can be sent
using any of the above services.

Like SSL, S-HTTP allows authentication to be done before any data has flowed,
avoiding the overhead of an initial request from a Web browser being rejected
with an authorization error.

For a description of S-HTTP, see the following URL:

http://www.terisa.com/shttp

The full IETF draft specification is available at:

http://www.terisa.com/shttp/current.txt

3.3.6 Pretty Good Privacy
Pretty Good Privacy is an encryption tool that has attracted much publicity and is
available in the public domain. It is used mostly by private individuals rather than
in the commercial environment. It is however being looked at by NCSA as a
possible HTTP public key encryption scheme. For more details, see the following
URL:

http://hoohoo.ncsa.uiuc.edu/docs/PEMPGP.html

3.3.7 Kerberos
Kerberos was originally developed by the Massachusetts Institute of Technology
(MIT), and has for some time been widely accepted in the UNIX world as an
industrial-strength security solution. It is the security solution used by the Open
Software Foundation (OSF) in its blueprint for distributed computing, the
Distributed Computing Environment (DCE). As such, it is available on a variety of
platforms, including OS/2 Warp, MVS/ESA, OS390, Windows NT, Windows 95,
Security 25

AS400, and UNIX Systems and is now making its presence felt in the world of
OLTP.

Quite a lot of activity is being devoted to adapting DCE to the Web environment,
which may benefit those sites that already have a DCE infrastructure and attract
others who want to implement a companywide cross-platform and cross-system
security infrastructure.

For more information on Kerberos and DCE, see the following URLs:

http://www.yahoo.com/Computers_and_Internet/Security_and_Encryption/Kerberos/
http://www.osf.org/comm/lit/lit-dce.html
http://www.osf.org/www/dceweb/DCE-Web-Home-Page.html
http://snapple.ncsa.uiuc.edu/adam/khttp/intro.html

3.4 Commercial Activities on the Web

Given the phenomenal growth of commercial activity on the Web, the need for a
complete solution to the security issues we discuss here has been recognized for
some time. While SSL and S-HTTP provide the infrastructure for secure
commercial transactions over the Web, the race is on to provide an integrated
security solution that allows customers, merchants, and financial institutions to
conduct their business in a secure environment.

Below we look at some of the leading technologies that allow secure Internet
commerce. The trend seems to be one of convergence, with the different
offerings tending toward a common approach and offering complementary
products.

3.4.1 SecureWeb
SecureWeb was developed by Terisa Systems, a company specializing in
technologies to make secure Internet transactions. Terisa Systems is owned by a
consortium of online service providers and Internet technology developers,
including IBM, Netscape, and EIT (the developers of S-HTTP).

SecureWeb is essentially a toolkit that allows developers of Web browsers and
Web servers to write products that can conduct secure transactions over the
Web.

iKP (see 3.4.2, “Internet Keyed Payment Protocol” on page 26) uses SecureWeb
to conduct its secure transactions. For more information see the following URLs:

http://www.terisa.com/pr/120296.html
http://www.ibm.com/Features/InetWorld95/pr4.html

3.4.2 Internet Keyed Payment Protocol
Internet Keyed Payment Protocol iKP is a multiparty security protocol developed
by IBM. It allows buyers and sellers to engage third parties, such as banks and
credit card companies, in a single, secure payment transaction. Buyers can
securely send an encrypted credit card number to a seller, who then forwards it to
the credit card company for decryption and transaction approval. The credit card
company then notifies the seller of credit approval without the seller ever seeing
the unscrambled buyer's credit card number.
26 Accessing CICS Business Applications from the WWW

iKP is an open proposal and has been designed with the intention of serving as a
starting point for eventual standards on secure electronic payment. It received
favorable responses from both the financial and technical communities and is
being proposed as an open Internet secure payments standard.

For more information, see URL:

http://www.zurich.ibm.com/Technology/Security/extern/ecommerce/iKP.html

3.4.3 Secure Internet Payment Service
Like iKP, the Secure Internet Payment Service offers an integrated approach to
electronic commerce. It has been developed by CyberCash Incorporated, who
also have links with EIT, the developers of S-HTTP. For details, see the following
URL:

http://www.cybercash.com/

3.4.4 Secure Electronic Payment Protocol
The Secure Electronic Payment Protocol (SEPP) is an open specification for
secure bank card transactions over the Internet developed by IBM, Netscape,
GTE, CyberCash and MasterCard. A draft version was released for comment in
November 1995. SEPP provides an embodiment of the iKP protocol.

3.4.5 Secure Transaction Technology
Secure Transaction Technology (STT) is a secure payment protocol developed by
Microsoft and Visa International. STT is intended for ordering products over
networks, including the Internet, where payment is by bank card. STT includes
messages for ordering goods and services electronically, requesting
authorization of payment, and requesting "credentials" (that is, certificates)
binding public keys to identities, among other services. All parties have a
public/private key pair; authentication of all parties, based on their credentials
and a digital signature, is a requirement of the protocol. This includes merchants,
payment servers, and cardholders.

3.4.6 Secure Electronic Transaction
Secure Electronic Transaction (SET) is a specification designed to utilize
technology for authenticating the parties involved in electronic credit card
payments on any type of online network, including the Internet. SET was
developed by Visa and MasterCard, with participation from leading technology
companies, including IBM, Netscape, Microsoft, SAIC, GTE, RSA, Terisa
Systems and VeriSign. By using sophisticated cryptographic techniques, SET will
make cyberspace a safer place for conducting business and is expected to boost
consumer confidence in electronic commerce. SET focuses on maintaining
confidentiality of information, ensuring message integrity, and authenticating the
parties involved in a transaction. The significance of SET, over existing Internet
security protocols, is found in the use of digital certificates. Digital certificates will
be used to authenticate all the parties involved in a transaction. SET will provide
those in the virtual world with the same level of trust and confidence a consumer
has today when making a purchase anywhere in the physical world. The SET
specification is open and free to anyone who wishes to use it to develop
SET-compliant software for buying or selling in cyberspace. SET evolved from
Security 27

iKP, SEPP, and STT and seems to become the favorite Internet credit payment
standard.

For more information on SET, check:

http://www.visa.com/cgi-bin/vee/nt/ecomm/set/

3.5 Java Security

The term Java Security is sometimes confusing. Often, people associate it with
the Java security functions provided as features of the Java language and the
Java virtual machine. Others may understand Java Security as their own security
policies implemented on top of these features. Chapter 4.6, “Java Security” on
page 49 describes the Java security functions and its implementations. In this
section, we give you a more general understanding about the Java security
features.

3.5.1 Security Implications while Distributing Executable Code
Java applets are small pieces of executable code that may be included in Web
pages, downloaded from the net, and executed in the users Web browser.
Applets exploit client/server computing dramatically; see Chapter 4.5, “Java” on
page 47.

While applets solve many of the important problems in client/server and network
computing (as for example distributed software management or platform
independence), they also raise new concerns about security. In traditional
environments, companies could protect themselves by controlling physical and
network access to their computers by establishing policies for the kinds of
software that can be used on their machines. These steps include building a
firewall between the Internet and the company’s intranet, obtaining software only
from known and trusted sources, and using antivirus programs to check all new
software. Use of applets potentially adds a new security vulnerability. An
employee searching an external Web site for information might inadvertently load
and execute an applet without being aware that the site contains executable
code. This automatic distribution of executables makes it very likely that software
will be obtained from untrusted third parties. Since the applet is imported into the
user’s Web browser and runs locally, this software could potentially steal or
damage information stored in the user’s machine on a network file server. Also,
since this software is already behind the company’s firewall, the applet could
attack other unprotected machines on a corporate intranet. Such attacks would
not be stopped by traditional security measures.

Web browsers protect their users from these dangers by placing strict limits on
applets. Applets cannot read from or write to the local disk. Stand-alone windows
created by applets are clearly labeled as being owned by untrusted software.
These limits prevent malicious applets from stealing information, spreading
viruses, or acting as Trojan horses. Applets are also prohibited from making
network connections to other computers on the corporate intranet. This prevents
malicious applets from exploiting security flaws that might exist behind the
firewall or in the underlying operating system. While Java is not the first or only
platform that claims to be secure in means of distributing executable code over
the internet, it is perhaps the best known and most widely used.
28 Accessing CICS Business Applications from the WWW

3.5.2 The Java Security Features
In Chapter 4.6, “Java Security” on page 49, we describe what Java security
features are available and how they can be applied. In the following, we give you
a more general overview of them and explain the commonly used terms.

3.5.2.1 The Sandbox
Java’s security allows a user to import and run applets from the Web or an
intranet without undue risk to the user’s machine. The applet’s actions are
restricted to its “sandbox”, an area of the Web browser dedicated to that applet.
The applet may do anything it wants within its sandbox, but cannot read or alter
any data outside of its sandbox. The sandbox model is to run untrusted code in a
trusted environment so that if a user accidentally imports a hostile applet, that
applet cannot damage the local machine. The sandbox is made up of several
different components:

The Class Loader
The class loader is the first link in the security chain. It defines which other
resources from a virtual machine can be accessed by an applet. The class loader
enforces the Java name space hierarchy and guarantees that a unique name
space exists for classes that come from the local file system, and that a unique
name space exists for each network source. When a browser loads an applet
over the net, that applet's classes are placed in a private name space associated
with the applet's origin. Thus, applets loaded from different network sources are
partitioned from one another.

The Verifier
The verifier is invoked by the class loader. It checks to see that the applet
conforms to the Java language specification and that there are no violations of
the Java language rules or name space restrictions.

The Security Manager
The security manager enforces the boundaries around the sandbox. Whenever
an applet tries to perform an action that could corrupt the local machine or access
information, the Java Virtual Machine first asks the security manager if this action
can be performed safely. If the security manager approves the action (for
example, a trusted applet from the local disk may be trying to read the disk, or an
imported untrusted applet may be trying to connect back to its home server) the
virtual machine will then perform the action. Otherwise, the virtual machine raises
a security exception and writes an error to the Java console. The security
manager will not allow an untrusted applet to read or write to a file, delete a file,
get any information about a file, execute operating system commands or native
code, load a library, or establish a network connection to any machine other than
the applet’s home server.

An application or a web browser can only have one security manager. This
assures that all access checks are made by a single security manager enforcing
a single security policy. The security manager is loaded at start-up and cannot be
extended, overridden, or replaced. For obvious reasons, applets cannot create
their own security managers.

3.5.2.2 Extended Java Security Facilities
The sandbox model described above protects the end-user’s machine and
networked computing resources from damage or theft by a malicious applet.
Security 29

Users can run untrusted code obtained from the network without undue risk to
their system. The sandbox model does not address such security and privacy
issues as:

 • Authentication

 • Digital Signature

 • Auditing

 • Encryption

These security and privacy issues are subject of SUN’s ongoing Java
standardization and development process. The first release of Java Security in
JDK 1.1 contains a subset of cryptography functionality, including APIs for digital
signatures and message digests. In addition, there are abstract interfaces for key
management and certificate management. A good place to find the latest
information about Java security is:

http://java.sun.com/security/
30 Accessing CICS Business Applications from the WWW

Part 2. Programming and Connectivity
© Copyright IBM Corp. 1998 31

32 Accessing CICS Business Applications from the WWW

Chapter 4. Programming for the Web

Many methods have evolved to access Business Applications from a Web
browser. The extent to which you need to program for the Web depends on what
you intend to use the Web for. If you are using the Web to store and retrieve
preformatted HTML pages, then you don’t need to do any Web programming at
all. Everything is handled by your Web server and Web browser.

Using the Web to access existing business applications without modifying the
business applications, may require additional programming. The additional
programming can either be done behind an interface that allows the Web server
to execute a program and return the results of that program (if required) to the
Web browser, or through a Java client/server scheme.

Most Web servers provide an interface that allows the Web server to execute a
program and return the results of that program (if required) to the Web browser.
The most commonly used interface is the Common Gateway Interface (CGI),
described in 4.3, “Common Gateway Interface Scripts” on page 39. The CGI is an
architected way of invoking programs from a Web server and returning any output
from that program to the Web browser. The CERN, the NCSA, and the Domino
Go Webserver use the CGI interface. The GoServe Web server has an interface
that provides a similar function, but it uses filter programs rather than a CGI-style
interface.

In the Java client/server approach, the Web server downloads Java classes
required to access business applications and/or business data from a server
system directly. In such a case, the Web server delivers the access programs for
any business applications or business data through the Web to the requesting
Web clients which are Java client enabled. With this techniqe the designer of a
Web business application access program is free to use any client /server model
and the Web client runs always the latest code version.

Allowing Web servers to invoke or distribute programs transforms the Web from a
data retrieval and display tool with limited scope into an extremely powerful and
flexible method of client/server transaction processing that can take user input
entered at the Web browser (the client), and pass that user input to programs
running on the Web server. By using Web server programs in this way, you can
perform such tasks as:

 • Create HTML pages dynamically in response to user input.
 • Perform administration functions on your Web server machine remotely.
 • Create, update, and delete files on your Web server machine
 • Execute traditional style short-running transactions.
 • Issue SQL queries to a relational database manager (RDBM) such as DB2 or

Oracle.
 • Access any application that manages shared data, for example Lotus Notes

and IBM BookManager BookServer.
 • Create a smarter client while using downloaded Java classes.

4.1 Using Uniform Resource Locators

It is worth taking some time to look at URLs in more detail, because you need to
understand how they work so you can write programs for the Web. URLs
© Copyright IBM Corp. 1998 33

represent the hypermedia links and links to network services within HTML
documents. You can represent nearly any file or service on the Internet with a
URL.

A URL can be divided into three distinct sections, as shown in the example in
Figure 6.

Figure 6. A Uniform Resource Locator

The first part of the URL http:// specifies the method, service, or protocol to use
to access a Web document. This is http, for HTML documents but the Web also
supports other Internet protocols including ftp, telnet, news and gopher. You can
also specify an access method of file to allow your Web browser to access a file
directly from a disk on your personal computer.

The second part www.ibm.com is the Internet address of the computer on which the
the data or service is located. If your domain name server cannot resolve the
name, you can also specify the TCP/IP address directly, for example 9.20.2.35.
You may also need to append the TCP/IP port to which the request is to be sent,
for example www.ibm.com:80 or 9.20.2.35:80. You need to do this only if the server
is not using the standard or well-known TCP/IP port assigned to that service. The
standard port for http is 80.

The third part Security/content.html specifies the name of the file or service that
is being requested. In CICS terms, this part of the URL can be loosely described
as the Web equivalent of the CICS transaction identifier.

Sites that run World Wide Web servers often include www as the first part of their
Internet address.

Here are some examples of URLs:

 • http://www.research.ibm.com/music/music3.html

 Lets you retrieve a sound file and plays it

 • http://www.internet.ibm.com/computers/networkstation/download.html

 Lets you retrieve brochures and display them, either in a separate program
(PDF reader) or within a hypermedia document

 • file:///c:/www/html

 Displays the contents of the C:\www\html directory on your own workstation

 • http://www.redbooks.ibm.com/catalog/trnsactn.htm

 Connects to an HTTP server and retrieves an HTML file

 • ftp://ftp.transarc.com/welcome.msg

 Opens an FTP connection to www.xerox.com and retrieves a text file

 • gopher://www.hcc.hawaii.edu

 Connects to the gopher at www.hcc.hawaii.edu

 • telnet://www.hcc.hawaii.edu:1234

 Open a telnet session to www.hcc.hawaii.edu at port 1234

 • news:alt.hypertext

 Reads the latest Usenet news by connecting to a user-specified news host
and returns the articles in the alt.hypertext newsgroup in hypermedia format.

 http://www.ibm.com/Security
34 Accessing CICS Business Applications from the WWW

Most Web browsers allow you to specify a URL and connect to that document or
service. When selecting a hypertext link in an HTML document, you are actually
sending a request to open a URL. In this way, hyperlinks can be made not only to
other texts and media, but also to other network services. Web browsers are not
simply Web clients, but can also be FTP, gopher, and News clients.

Be aware that, depending on the file system being used by the Web server,
URLs are most commonly case-sensitive!

4.2 Hypertext Transfer Protocol Header Information

Any request received from a Web browser has HTTP header information that can
be very useful both for logging and auditing purposes, and for making your Web
programming easier and more user-friendly. The header consists of four sections,
the general header, the request header, the response header and the entitity
header. Table 1 to Table 4 shows the current HTTP1.1 architected headers.

You can use the cgiutils tool (see 4.9, “Utility CGIUTILS” on page 75) to help you
to build HTTP headers. For full details of the HTTP1.1 specifications, see the
following documents:

http://www.w3.org/Protocols/Specs.html#HTTP1.1
http://www.w3.org/Protocols/rfc2068/rfc2068
http://www.w3.org/Protocols/HTTP/Issues/

4.2.1 General Header Fields
There are a few header fields which have general applicability for both request
and response messages, but which do not apply to the entity being transferred.
These header fields apply only to the message being transmitted.

Table 1. Information Available in HTTP General Header

Header Description

Cache-Control The Cache-Control field is used to specify directives that must be
obeyed by all caching mechanisms along the request or response
chain. These directives typically override the default caching
algorithms.

Connection The Connection field allows the sender to specify options that are
desired for that particular connection and must not be
communicated by proxies over further connections.

Date The date field represents the date and time at which the message
originated.

Pragma The Pragma field is used to include implementation specific
directives that may apply to any recipient along the
request/response chain. All pragma directives specify optional
behavior from the viewpoint of the protocol. However, some
systems may require that behavior be consistent with the
directives.

Transfer-Encoding The Transfer-Encoding field indicates what (if any) type of
transformation has been applied to the message body in order
to safely transfer it between the sender and the recipient. This
differs from the Content-Encoding field in that the transfer
coding is a property of the message, not of the entity.
Programming for the Web 35

4.2.2 Request Header Fields
The request header fields allow the client to pass additional information about the
request, and about the client itself, to the server. These fields act as request
modifiers with semantics equivalent to the parameter on a programming language
method invocation.

Table 2. Information Available in HTTP Request Header

Upgrade The Upgrade field allows the client to specify what additional
communication protocols it supports and would like to use if the
server finds it appropriate to switch protocols.

Via The Via field must be used by gateways and proxies to indicate
the intermediate protocols and recipients between the user agent
and the server on requests and between the origin server and the
client on responses.

Header Description

From The From field contains the Internet e-mail address of the human
user who controls the requesting user agent.

Accept The Accept field can be used to specify those media types that
are acceptable for the response. Accept headers can be used to
indicate that the request is specifically limited to a small set of
desired types as in the case of a request for an in-line image. If no
Accept field is present, then it is assumed that the client accepts
all media types.

Accept-Encoding The Accept-Encoding field is used to indicate whether the
response is encoded in any way, for example if it is a ".zip" or
compressed file.

Accept-Language The Accept-Language field restricts the set of natural languages
that are preferred as a response to the request.

Accept-Charset The Accept-Charset field can be used to indicate what
character sets are acceptable for the response. If no
Accept_Charset field is present, the default is that any
character set is acceptable.

User-Agent The User-Agent field contains information about the user agent
(Web browser) originating the request. It is being used for
statistical purposes, tracing of protocol violations, and automated
recognition of user agents for the sake of tailoring responses to
avoid particular user-agent limitations.

Referer The Referer field is very useful. It allows the client to specify, for
the server’s benefit, the URI of the resource from which the
Request-URI was obtained. This allows a server for example to
generate lists of back-links to resources for interest, logging, or
optimized caching. It also allows obsolete or mistyped links to be
traced for maintenance.

Authorization The Authorization field enables a user agent (Web browser) that
wishes to authenticate itself with a server to do so by including an
Authorization field with the request. The Authorization field value
consists of credentials containing the authentication information
of the user agent for the realm of the resource being requested.

Header Description
36 Accessing CICS Business Applications from the WWW

4.2.3 Response Header Fields
The Response header fields allow the server to pass additional information about
the response which cannot be placed in the status line. These header fields give
information about the server and about further access to the resource identified
by the Request-URI.

Table 3. Information Available in HTTP Response Header

Header Description

Proxy-Authorization The Proxy-Authorization field allows the client to identify itself
to a proxy which requires authentication The Authorization field
value consists of credentials containing the authentication
information of the user agent for the proxy and/or realm of the
requested resource.

If-Modified-Since The If-Modified-Since field is being used to make the GET method
conditional. The Web server returns the requested document only
if it has been updated since the update supplied.

If-Match The If-Match field is used with a method to make it conditional.
A client (Web browser) that has one or more entities previously
obtained from the resource can verify that one of those entities
is current by including a list of their associated entity tags in the
If-Match field.

If-Non-Match The If-Match field is used with a method to make it conditional.
A client (Web Browser) that has one or more entities previously
obtained from the resource can verify that one of those entities
is current by including a list of the associated entity tags in the
If-Match field.

If-Range The If-Range field is being used to make the GET methode
conditional. If a Web client has a partial copy of an entity in its
cache, it could copy the entire entity in its cache using the
Range request header with a conditional GET.

Host The Host field specifies the Internet host and port number of
the resource being requested as obtained from the original
URL given by the user or referring resource. A host definition
without any trailing port information implies the default port for
the service requested. (for example, 80 for an HTTP URL).

Range The Range field specifies one or more sub-ranges of an entity
to be copied with a conditional or unconditional GET

Max-Forwards The Max-Forwards field may be used with the TRACE method
to limit the number of proxies or gateways that can forward the
request to the next inbound server.

Header Description

Age The Age field conveys the sender’s estimate of the amount of time
since the response was generated at the origin server. A cached
response is fresh if its age does not exceed its freshness lifetime.

Location The Location field is used to redirect the recipient to a location
other than the Request-URI for completion of the request or
identification of a new resource.
Programming for the Web 37

4.2.4 Entity Header Fields
Entity header fields define optional metainformation about the entity body or, if no
body is present, about the resource identified by the request

Table 4. Information Available in HTTP Entity Header

Proxy-Authenticate The Proxy-Authenticate field value consists of a challenge that
indicates the authentication scheme and parameters applicable to
the proxy for this Request-URI. The Proxy-Authenticate field
must be included as part of a Proxy Authentication Required
response.

Public The Public field lists the set of methods supported by the server.
Examples of methods are: GET, MGET, HEAD OPTIONS.

Retry-After The Retry-After field can be used to indicate how long the service
is expected to be unavailableto the requesting client.

Server The Server field contains information about the software used by
the origin server to handle the request. The field can contain
multiple product tokens and comments identifying the server and
any significant subproducts.

Vary RFC2068 Chpt. 14.43 (pg 170)

Warning The Warning field is used to carry additional information about the
status of a response which may not be reflected by the response
status code.

WWW-Authenticate The WWW-Authenticate field MUST be included in Unauthorized
response messages. The field value consists of at least one
challenge that indicates the authentication scheme and
parameters applicable to the Request-URI.

Header Description

Allow The Allow field lists the set of methods that the requesting user
can specify for this URL. (for example, GET, POST, HEAD).

Content-Base The Content-Base field may be used to specify the base URI for
resolving relative URLs within the entity. This header field is
described as Base in RFC1808, which is expected to be revised.

Content-Encoding The Content-Encoding field is used as a modifier to the media
type. When present, its value indicates what additional content
codings have been applied to the entity body, and thus what
decoding mechanisms must be applied in order to obtain the
media type referenced by the Content-Type header field. (for
example, Content-Encoding: gzip).

Content-Language The Content-Language field describes the natural language of the
intended audience for the enclosed entity.

Content-Length The Content-Length field indicates the size of the message body,
in decimal number of octets, sent to the recipient or, in case of the
HEAD method, the size of the entity body that would have sent
had the request been a GET.

Header Description
38 Accessing CICS Business Applications from the WWW

4.3 Common Gateway Interface Scripts

CGI scripts do not have to be complex programs. Figure 7 shows a "Hello World"
REXX CGI script that dynamically creates an HTML document to return to the
Web browser.

Figure 7. Simple REXX CGI Program

Figure 8 on page 40 shows a C program that performs a similar function.

Content-Location The Content-Location field may be used to supply the resource
location for the entity enclosed in the message. Where a resource
has multiple entities associated with it, and those entities actually
have separate locations by which they might be individually
accessed, the server should provide a Content-Location for the
particular variant that is returned.

Content-MD5 The Content-MD5 field, as defined in RFC1864[23], is an MD5
digest of the entity body for the purpose of providing an
end-to-end message integrity check (MIC) of the entity body.
Important: MIC is good for detecting accidential
modification of the entity body in transit, but is not proof
against against malicious attacks!

Content-Range The Content-Range field is sent with a partial entity body to
specify where in the full entity body the partial body should be
inserted.

Content-Type The Content-Type field indicates the media type of the entity body
sent to the recipient or, in the case of the HEAD method, the
media type that would have been sent had the request been a
GET.

Expires The Expires field gives the date after which the response should
be considered stale. A stale cache entry may not normally be
returned by a cache unless it is first validated with the origin
server.

Last-Modified The Last-Modified field indicates the date and time at which the
origin server belives the variant was last modified.

ETag The ETag field defines the entity tag for the associated entity. The
entity tag may be used for comparison with other entities from the
same resource.

Header Description

/* A Message */
say "Content-type: text/html"
say""
say "<P>Hello World"
Programming for the Web 39

Figure 8. Simple C CGI Program

Note that for both REXX and C, you use standard functions to write output to the
standard output stream (namely say and printf) to return data to the Web server.

<H1>, </H1>, and <P> are HTML tags. Tags are commands within an HTML
document that describe its structure and formatting. Other formatting languages
that use tags include the Standard Generalized Markup Language (SGML) on
which HTML is based, and the generalized markup language (GML) used by
IBM’s Document Composition Facility and BookMaster. For a detailed
introduction to HTML, see the following URL:

http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/fill-out-forms/overview.html

When deciding the language in which to code your CGI programs, you have a
choice of a wide variety of languages; there are the interpretive languages such
as REXX and PERL, and languages that have to be compiled such as C and
COBOL.

Most of the CGI documentation assumes that you will be using an interpretive
language. These languages are ideal for the CGI environment. They offer
powerful utilities for parsing incoming data, string handling to dynamically build
HTML documents, and the ability to invoke other compiled programs when
required. If you want to get something working quickly, then an interpretive
language is probably the best way to start. If you are keen to optimize the
performance of your Web server you may want to consider coding your CGI
programs in a compiled language such as C or COBOL. Some C procedures
available on the Web provide code to parse incoming forms data for you, so you
do not have to code these utilities yourself. See:

ftp://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/cgi/

4.3.1 Invoking Common Gateway Interface Scripts
How you tell your Web server to invoke a CGI script to process a URL, rather
than retrieve an HTML document, depends upon the Web server you are using.
NCSA, CERN, and Domino Go Webserver use server mapping directives, while
for GoServe, this work is done by the filter program.

4.3.1.1 Server Mapping Directives
You use server script mapping directives to tell your Web server which URLs map
to CGI scripts rather than HTML documents. The way in which this is done
depends upon the Web server you are using:

 •ScriptAlias virtualpath actualpath

ScriptAlias is the NCSA implementation of server mapping directives. A
ScriptAlias directive is placed in the configuration file for your Web server

#include <stdio.h>
#include <stdlib.h>
void main() {
 printf("Content-type: text/html%c%c",10,10);
 printf("<H1> Hello World</H1>");
 return;
}

40 Accessing CICS Business Applications from the WWW

specifying a script directory virtual path and an actual path for that directory.
For instance, if you specify:

ScriptAlias /cgi-script/ /usr/local/etc/httpd/cgi-script

you are saying that any request specifying cgi-script in the transaction
identifier part of its URL actually causes a program in directory
/usr/local/etc/httpd/cgi-script to be executed. So if the following URL is
received:

http:/baffin.sanjose.ibm.com/cgi-script/REXXCGI

then the Web server executes the following program:

/usr/local/etc/httpd/cgi-script/REXXCGI

You can have multiple ScriptAlias statements in your configuration file; your
CGI scripts can then be in multiple directories.

 •Exec virtualpath actualpath

This is the CERN , and the Domino Go Webserver implementation of server
mapping directives. It too is placed in the configuration file of the Web server.
For the Domino Go Webserver for OS/2 Warp, this file is

c:\tcpip\etc\httpd.cnf

If, for example, you coded the following in your configuration file:

Exec \cgi-bin* C:\WWW\CGI-BIN*

and your Web server received the following URL,

http://ladoga.sanjose.ibm.com/cgi-bin/REXXCGI

the Web server invokes program REXXCGI in directory C:\WWW\CGI-BIN . You can
have multiple Exec statements in your configuration file, so your CGI scripts
can reside in more than one directory.

For more details on server mapping directives, see the following Domino Go
documentation:

http://www.ics.raleigh.ibm.com/dominogowebserver/doc461.htm

4.3.1.2 Mapping Using GoServe
GoServe differs from the CERN and NCSA Web servers insofar as it does not use
the CGI interface. Instead, it uses programs called filters, which look at the URL
dynamically, and it is the filter itself that determines which filter program
processes the incoming request. Figure 9 shows a fragment of REXX code that
looks for the string $CICSWEB in variable sel , where sel is the REXX variable
containing the URL. If sel contains $CICSWEB, the code invokes REXX program
cicsweb.80 to process the client request.

Figure 9. GoServe Mapping Code

/***/
/* Modifications for CICS Web Interface. */
/***/
if translate(left(sel,8)) ='$CICSWEB' then do
 return cicsweb /* call the application */
end /* CICSWEB */
Programming for the Web 41

Typically, you modify the REXX GOFILTER.80 filter program provided as a sample
with GoServe, to act as a router that looks at the incoming URL and invokes the
appropriate filter to process the request.

See the following reference for details of GoServe:

 http://www2.hursley.ibm.com/goserve

4.3.2 Passing Data to Common Gateway Interface Scripts
There are three ways in which you can pass data to a CGI script:

 • Environment variables

 • Standard input stream

 • Command line arguments

4.3.2.1 Environment Variables
A lot of information about the request received from the Web browser is passed to
the CGI script in the form of environment variables. How these environment
variables are retrieved depends upon the language in which the CGI script is
written. Figure 10 on page 43 illustrates how the getenv function can be used by a
CGI script written in C to retrieve the environment variables and return them to
the Web browser.

See Spinning the Web for information about environment variables used by the
CGI.
42 Accessing CICS Business Applications from the WWW

Figure 10. Using the getenv C Function

Figure 11 on page 44 shows how a REXX CGI script on OS/2 could do the same.

#include <stdio.h>
#ifndef NO_STDLIB_H
#include <stdlib.h>
#else
#endif
/**/
/* This CGI script retrieves all the environment variables */
/* passed to it by the Web Server, puts them into an HTML document, */
/* and returns them to the Web browser. */
/* Note that not all the environment variables will always have */
/* values associated with them, depending on what was sent by the */
/* Web browser. */
/**/
 main(int argc, char *argv[]) {

 printf("Content-type: text/html%c%c",10,10);
 printf("<H1> The CGI script was successfully invoked</H1>");
 printf("REQUEST_METHOD = ");
 printf(getenv("REQUEST_METHOD"));
 printf("\n");
 printf("<P>QUERY_STRING = ");
 printf(getenv("QUERY_STRING"));
 printf("\n");
 :
 :
 printf("<H1>HTTP Header Information</H1>");
 printf("<P>HTTP_USER_AGENT = ");
 printf(getenv("HTTP_USER_AGENT"));
 printf("\n");
 printf("<P>HTTP_ACCEPT = ");
 printf(getenv("HTTP_ACCEPT"));
 printf("\n");
 :
 :
}

Programming for the Web 43

Figure 11. Retrieve OS/2 Environment Variables Using REXX

There is a discussion of the use of the QUERY_STRING, CONTENT_TYPE, and
CONTENT_LENGTH environment variables in 4.8.1, “Forms” on page 67.

Note that all the architected HTTP header information supplied by the Web
browser (see 4.2, “Hypertext Transfer Protocol Header Information” on page 35)
is passed as environmental variables, the names of which are the names of the
header prefixed with HTTP_.

4.3.2.2 Standard Input Stream
If a request is made using the HTTP POST mechanism (see 4.8.1, “Forms” on
page 67) then any input entered into a form by the user of the Web browser is
passed to the CGI script in the script's standard input stream.

In this case, the MIME type of the data and its length are passed to the CGI script
in the CONTENT_TYPE and CONTENT_LENGTH environment variables.

Retrieving and parsing the data is straightforward; the parsing functions provided
by REXX make it an ideal language for this kind of operation, and C functions are
readily available via FTP to do the same. See the following URL for an FTP
directory containing C source for decoding forms input streams for both GET and
POST:

ftp://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/cgi/cgi-src

Most CERN and NCSA Web servers also provide the cgiparse utility (see 4.10,
“Utility CGIPARSE” on page 76) to decode input streams. However, you should
achieve better performance using the built-in facilities of your scripting language
rather than an external program.

Figure 12 on page 45 shows one of the many ways in which data might be
retrieved by using REXX. Note that some decoding has to be done, because
HTTP replaces ""with "+" and uses "%" as an escape character to signal that the
next two characters in the stream should be treated as the hexadecimal
representation of the character. This example includes a function named packur to
decode escape sequences. We also need this function in many of the later
examples in this chapter. We do not repeat the source code in the later examples,

/***/
/* This REXX CGI script uses the "value" function to retrieve the */
/* environment variables passed to it by the Web server, and */
/* place the values in an HTML document that is returned to the */
/* Web browser. */
/***/
say "Content-type: text/html"
say""
say ’<H1>ENVIRONMENT VARIABLES PASSED TO THE CGI SCRIPT </H1>’
env = ’OS2ENVIRONMENT’

say ’<P> QUERY_STRING = ’ value(’QUERY_STRING’,,env)
 :
 :
say ’<P> PRAGMA = ’ value(’HTTP_PRAGMA’,,env)
44 Accessing CICS Business Applications from the WWW

however. The program displays the input data it receives from the form that
invoked it, both in its formatted and unformatted form.

Note that the CONTENT_LENGTH environment variable is used to establish the length
of the data to be processed.

Figure 12. REXX Program to Decode Forms Input

4.3.2.3 Command Line Input
This is the least common means of passing data from the Web server to the CGI
script. It is used only if the Web server cannot find an "=" in an inbound query
string, so the incoming data is not a form. In this case, the Web server splits the
string into component words, using the "+" symbol as the delimiter (the HTTP
protocol cannot handle embedded blanks in URL strings, so the rule is that
blanks are replaced by "+" symbols).

If data is passed to the CGI script in this format, then the first argument (arg0)
passed to the CGI script is the script command name.

/* A Message */
say "Content-type: text/html"
say""

/* get the incoming data */
data = charin(,,value(’CONTENT_LENGTH’,,’OS2ENVIRONMENT’))
say ’Raw form data is "’data’<p>’
say ’Extracted variables are:<P>’

/* Parse input vars from form into var.x */
/* set VAR.x variables from the incoming data stream */
VAR.=’’ /* null string unless set */
data=data’&’ /* set end condition */
do until data=’’ /* each value */
 parse var data assign ’&’ data /* split off name=value */
 parse var assign name ’=’ value /* separate */
 value=translate(value, ’ ’, ’2b090a0d’x) /* handle ’+’ tabs & CRLF*/
 name=translate(packur(name)) /* caseless name */
 var.name=packur(value) /* set, after URL decoding */
 say ’ var.’name ’is "’var.name’"<p>’
end
return ’’

/**/
/* Packur: This procedure takes an input string, and converts */
/* characters encoded as escape sequences (e.g. %xx) back to the */
/* character that they represent. */
/**/
packur: procedure
 parse arg outstring ’%’ rest
 do while length(rest) > 1
 outstring = outstring||x2c(substr(rest,1,2)) /* decode value */
 rest = substr(rest,3)
 parse var rest next ’%’ rest
 outstring = outstring||next
 end
 return outstring
Programming for the Web 45

4.4 Internet Connection Application Programming Interface ICAPI

On the OS/390 internet server (Internet Connection Secure Server on OS/390
Rel. 1.3, and Lotus Domino Go Webserver for OS/390 on OS/390 Rel. 2.4) there
is an alternativ way to CGI, to access external programs which interface with the
Web Server. This alternativ to CGI is called Internet Connection Application
Programming Interface (ICAPI). ICAPI, other than CGI, offers a much faster
access path to mainframe resources for Web access.

The ICAPI intreface allows easily to expand the OS/390 Web server’s base
functions with own customized processing routines. This can be done by
specifying directives. Directives make the OS/390 Web server to call specified
application functions in a program at various points in its request processing
cycle. These directives need to be specified in the configuration file of the OS/390
Web server. The name of th configuration file is httpd.conf.

Figure 13. CICS ICAPI Overview

4.4.1 The Service Directive
CICS Transaction Server 1.2 uses only one of the directives offered by ICAPI.
The service directive is used to specify a customized application function it wants
the server to call during the service step. The format of this directive is:

Service request-template /path/file:function_name [Server-IP address or hostname]

/path/file
is the fully qualified name of a compiled program.

function_name
is the name given to the function within the program specified in /path/file.

request_template
is a template that determines if the specified application function is called.

If we want to use the OS/390 Web server in combination with the CICS Web
Interface (CWI), which is explained in Chapter 5.1.4, “CICS Web Interface” on
page 80, CICS Transaction Server 1.2 requires a service directive in the
httpd.conf file of the following format:

Service /applid/*/home/dfhwbapi.so:DFHService

In aboves example, Service is the name of the directive. The request_template
corresponds to the applid of a CICS region. /path/file corresponds with
/*/home/dfhwbapi.so and is the name of a CICS supplied program. Finally, the
function_name DFHService is the name of a function within this CICS program.

Web Browser

HTTP

Web Server
OS/390

CICS
TS1.2

CICS
ICAPI
DLL

EXCI
46 Accessing CICS Business Applications from the WWW

This directive is nothing else but a mapping ruleto indicate when dfhwbapi.so has
to be invoked. If the name of the applid in the incoming URL is the same as the
name specified in the service directive, control is passed to dfhwbapi.so. /applid/
is the name of the applid in the CICS region where we want to execute the user
program

4.5 Java

The Java language was developed by Sun Microsystems in 1991 as part of a
research project to develop electronic devices like television sets, VCRs or coffee
machines. The development goals for Java at that time were to have a
programming language that is portable (to be used in any electronic consumer
device), easy, fast, and small. Although Java has been used in several small
projects, it did not make its breakthrough until HotJava was invented. HotJava
was developed in 1994 as a vehicle for downloading and running Java applets
and to show how to develop Java applications. By today, HotJava has been more
or less replaced by modern Web browsers like the latest IBM WebExplorer,
Netscapes Navigator 2.00+, or Microsofts Internet Explorer 3.00+. These Web
browsers give the the Web users the possibility to download and run Java applets
across networks and platforms.

4.5.1 What Is Java?
Java is an interpreted and object-oriented language similar to C++. It can be used
to build programs that are platform independent in both source and object form.
At the source level, Java’s primitive data types have consistent sizes across all
development platforms and Java’s foundation class libraries make it easy to write
code that can be moved from platform to platform without the need to implement
platform specifics. These classes include graphical user interface functions,
input/output functions, and network communications. The binary compatibility is
given through platform independent byte code which is produced with a Java
compiler. How does that exactly work?

Where traditional compilers like a C or C++ compiler translates everything into
processor-dependent machine code or processor instructions, the Java byte code
compiler produces universal intermediate byte code, which is executed at run
time by a platform-specific byte code interpreter. The interpreter also checks the
byte code at execution time to ensure its validity and safety to the machine
environment. The isolation which the Java interpreter provides, coupled with the
platform-specific Java run time system, builds the platform independent Java
Virtual Machine (JVM) environment. Netscape Navigator 2.00+, and Microsoft
Internet Explorer 3.00+, support the JVM environment.

The Java language can be used to construct Java applets and Java applications.
Both are used in the CICS Gateway for Java.

4.5.2 Java Applets
Java applets, the small Java programs that are downloaded from the Web and
executed by a Web browser or a network computer, typically perform the type of
operations that client code would perform in a client/server architecture. An
applet edits input, controls the screen, and communicates transactions to a
server, which performs the data or database operations.
Programming for the Web 47

The "Hello World applet" in Figure 14 on page 48 shows the basic structure of a
Java applet. The import line at the top is very similar to the #include statement of
a C/C++ program. It enables access to the Java foundation classes. " The
method that displays the applets content in graphics mode to the screen is
"paint", in this example the string "Hello World".

Figure 14. "Hello World" applet

In order to be able to run this applet, you must first compile it with the Java
compiler.

javac HelloWorld.java

After the compile, you should have the file HelloWorld.class, which now can be
implemented into a HTML page.

The invocation of applets occurs through the use of the HTML applet tag. This tag
is used in HTML pages to indicate when applets are to have control and to
specify the display area to be used by the applet. When a Java-enabled server is
downloading a page and encounters this tag, it also downloads the applet byte
code in the same way it downloads an image which is referenced by an HTML
image tag. The Java-enabled browser then interprets and executes the applet
byte code.

Figure 15. HTML with Applet Tag

The downloading of applets should not have a significant performance impact on
the response time to end users, since the applets are typically not very big. In fact
applets, by performing processing on the browser or network computer, can
improve overall browser performance by eliminating iterations with the Web
server. As with images, applets are cached in Web browsers. This minimizes the
frequency of applet downloading.

import java.awt.Graphics;
import java.awt.Font;
public class HelloWorld extends java.applet.Applet
{
Font font = new Font("TimesRoman", Font.Bold, 32);

public void paint(Graphics g)
{

g.setFont(font);
g.drawString("Hello World", 5, 40);

}
}

<HTML>
<HEAD>
<TITLE>Good morning to everybody</TITLE>
</HEAD>
<BODY>
<P>Following is our Java applet:
<APPLET CODE="HelloWorld.class" WIDTH=100 HEIGHT=20>
</APPLET>
</BODY>
</HTML>
48 Accessing CICS Business Applications from the WWW

4.5.3 Java Applications
Java applications are general programs written in Java and executed locally on a
computer. Java applications don’t require a Web browser to run and allow
programming operations in addition to those used in applets, which can otherwise
make the code platform-dependent. It can access local files, it can create and
accept general network connections, and it can call native C/C++ functions in
machine-specific libraries.

Java applications can use the CICS-provided Java classes to do transaction
processing in CICS systems. They can use the JavaGateway class to establish
two kinds of connection:

 • A network gateway connection is a connection to a CICS Gateway for Java.
When the connection has been established, an application can use the
ECIRequest or the EPIRequest class or both, to do transaction processing.

 • A local gateway connection is a connection that, despite its name, does not
use a CICS Gateway for Java. The facilities available depend on where the
application is running:

 • If the application is running on a workstation with a CICS client, the
connection is to the CICS client. The application can use the ECIRequest,
or the EPIRequest class, or both, to do transaction processing.

 • If the application is running on a workstation without a CICS client, a local
gateway connection cannot be established.

 • If the application is running on an MVS system, the connection is to a CICS
pseudo-client that uses EXCI to communicate with CICS systems. The
properties of the pseudo-client (connected CICS system, for example) are
determined by environment variables set in the MVS system. The
application can use the ECIRequest (not the EPIRequest) class to do
transaction processing.

4.5.4 Java Beans
Java Beans is the component model for Java. The intention of Java Beans is to
define a model, thus enabling suppliers to create and ship Java components that
can be composed into applications by end users. For more details on Java
Beans, see:

http://java.sun.com/docs/books/tutorial/beans/whatis/software-components.html

or

http://java.sun.com/beans/related.html

4.6 Java Security

This section describes the security issues you need to be aware of when
developing a Java-based NC solution. Java security features are currently in a
state of change, and vary depending upon browsers and JVM implementations.
The information here should enable you to write a Java program that will not be
broken by security restrictions when you deploy it.
Programming for the Web 49

4.6.1 Java Security Features
In general, Java applets that are loaded from a network are deemed untrusted
and are restricted in the actions they can perform. Some of the things an
untrusted applet cannot do are listed here:

 • It cannot make network connections to hosts other than the originating host.

 • It cannot read and write files on local disks.

 • It cannot start external programs and processes.

 • It cannot load libraries and define native methods.

These restrictions allow a user to download an applet with reasonable assurance
that it cannot do harmful things to their system. It is up to the implementation of
the Java Virtual Machine (JVM) in the browser to ensure that these restrictions
are policed. Security bugs in JVM implementations have been found and Javasoft
maintain a chronology page, http://www.javasoft.com, on their Web site to record
the status of these bugs. Since its introduction, the Java technology has evolved
in the public eye and when security bugs are found, fixes have quickly followed.

Web browsers that support Java 1.0 applets are very strict about enforcing the
security rules and the term sandbox has been used to describe the restrictive
environment that the applet runs in. This is not a problem for small applets that
enhance the look and interface of Web pages, and do not provide much complex
functionality. Applications written in Java do not have these same restrictions and
can access the system in the same ways as traditional compiled programs. This
is because applications must be installed locally on a computer and run from the
local disk. It is the responsibilty of the person installing the application to know
what it is and that it can be trusted. This approach loses the advantages of
dynamically downloadable applets, where no code needs to be installed on the
users‘machines. Java 1.1 addresses this issue by allowing applet class files to be
digitally signed by the developer. This allows the end user to determine the
degree of trust that the applet can be afforded. When the trust is established, the
applet can be allowed to perform actions that an untrusted applet could not do.

4.6.2 Leaving the Sandbox
The latest versions of the popular Web browsers, Microsoft Internet Explorer
Version 4, Netscape Communicator Version 4, and HotJava Version 1.1 provide
mechanisms for the user to allow Java applets access beyond the sandbox.
These are based on digital signature and certificate technology and interaction
with the user of the browser. When a Java applet has been digitally signed, the
user can allocate security settings based on the signature. The applet can then
do things that would otherwise not be allowed if it had no signature. See 4.6.6,
“Digital Certificates” on page 55 for details on how using digital certificate
technology allows the user to make these security choices safely.

Once a mechanism for trusting a Java applet is used, the developer is free to
write code for any purpose. You have the full power of the Java language and can
write sophisticated client programs without any restrictions. These then use the
dynamic downloading capabilities of browsers, removing the need to administer
client platforms and manually install software. Within an Intranet environment, the
applet trust should be implicit, since the code has been developed by the
company and the intranet is secure. The use of external trusted third party
50 Accessing CICS Business Applications from the WWW

Certification Authorities as described in 4.6.6, “Digital Certificates” on page 55
would not be necessary.

The only drawback at the current time is the mechanisms used by different
browsers to establish whether or not an applet is trusted. Each of the popular
browsers uses a different mechanism, and Netscape Communicator requires the
use of special API calls in the Java applet code to request the privileges to
perform insecure actions. The certificate technology required to sign the code is
also different for each browser. Applet code that has been signed for one browser
will not work with the others. You are required to provide a separate copy of the
signed code for each possible browser.

Sun Microsystems have evolved the sandbox model in their architecture for Java
1.2 to include fine-grained access control. The details are in the Java Security
Architecture (JDK 1.2) document available from Sun Microsystems. The new
APIs have a purpose similiar to that of the Netscape Communicator Capabilities
API described in 4.6.3, “The Netscape Capabilities API” on page 51. When
Netscape Communicator supports Java 1.2, developers should no longer need to
use the Capabilities API. Other browsers that claim support for Java 1.2 will also
need to provide the security APIs that will be part of the core Java API. This will
solve the problem of requiring specific code for particular browsers. Java 1.2
should also provide a standard for signing JAR archive files that will be common
to Java browsers. This will allow for a single JAR files to be signed and then used
in any browser.

4.6.3 The Netscape Capabilities API
A signed Java applet that runs in Netscape Communicator is not automatically
allowed to access system resources. The developer must use calls to the
Capabilities API to enable privileges before the actions can be taken. There is a
PrivilegeManager class that controls access to a set of system targets. For
example, in order to successfully make a network connection, the following code
must be used:

PrivilegeManager.enablePrivilege("UniversalConnect");

The complete set of targets covers all the things an applet may aim to do, and
groups of targets allow for more general access. For example,

PrivilegeManager.enablePrivilege("TerminalEmulator");

includes the targets UniversalLinkAccess, UniversalPropertyRead,
UniversalListen, UniversalAccept and UniversalConnect. The Netscape
developer web site
http://www.javauniverse.com/Developer/97/06/SigningApplets/index.html
contains details on using the API, including a complete list of all the targets.

There is also an article at the JavaUniverse Web site by Joseph Bowbeer, entitled
"Signing Applets for Internet Explorer and Netscape Navigator" at
http://www.javauniverse.com/Developer/97/06/SigningApplets/index.html. It
contains useful code examples on using the API.

4.6.3.1 User Intervention and the Security Information Panel
When an applet makes an enablePrivilege call for the first time, the user must
decide how to process the request. Netscape Communicator displays a panel like
Figure 16, “Netscape Security Request” on page 52
Programming for the Web 51

Figure 16. Netscape Security Request

The name of the certificate is displayed, "Stephen Longhurst’s IBM ID" in Figure
16 on page 52, and a short description of the target being requested. The full
certificate can be displayed by clicking on the Certificate button. If the certificate
was not issued by a recognized authority then the applet is automatically denied
the requested privilege with no user intervention.

The user can grant or deny the privilege, and set the checkbox so that the panel
is not displayed every time the applet enables the privilege. You can check and
alter the privileges afforded to a certificate by using the using the "Security Info"
option any time.

The advantage of this method of setting the privileges is that the user does not
need to know in advance what an applet needs to do to run properly. During the
execution, the messages are displayed as required. We recommend issuing
enablePrivilege calls for each target your applet requires access to when
execution first starts. This gets the user dialogs out of the way at the beginning,
rather than interrupting the user during normal operation.

4.6.3.2 Principles
The principles in the Capabilities API refer to who is allowed to do certain actions,
and the targets refer to what they want to do. Section 4.6.3 describes some of the
targets. The principle of an applet is normally associated with its signature, hence
only signed applets can make use of the Capabilities API. It is the name of the
signature that is listed in the Java/JavaScipt section of the "Security Info" panel.
For developement purposes, having to sign the applet continuously for testing is
not very productive. You can get Netscape Communicator to recognize the
applet‘s code base as a principle when evaluating the privileges by adding the
following line to the preferences file:

user_pref("signed.applets.codebase_principal_support", true);

This allows you to write code that uses the Capabilities API, but does not need to
be signed.

4.6.4 Microsoft Internet Explorer Security Zone System
Microsoft Internet Explorer 4 introduces the concept of dividing the Web into
different zones. You can assign different levels of security to each zone, trusting
52 Accessing CICS Business Applications from the WWW

each at a different level. For example, you can set the Intranet zone to low
security (high trust) but the Internet zone to a high security level (low trust).
Figure 17, “Microsoft Internet Explorer Security” on page 53 is the security
settings panel in Microsoft Internet Explorer Version 4. You can see the Internet
zone has a High security setting by default.

Figure 17. Microsoft Internet Explorer Security

Java applets are allowed levels of access and capabilities based on the zone
from which they originate. By signing an applet, the developer can also specify
the security level the applet needs to run at. If the applet is loaded from a higher
security zone, the user needs to decide if the applet will be allowed to do what it
requests.

The capabilities that a Java applet can be granted are defined in High, Medium,
and Low settings. The High setting is equivalent to the sandbox-like environment.
The Medium setting adds the capabilitity to access a scratch pad. The scratch
pad is a secure area, proprietary to Microsoft Internet Explorer, which allows
applets to store information on the client machine. It is accessed with Java APIs
that are provided with the Microsoft Java Developers Kit. The Low setting allows
applets complete access to the system.

Microsoft claims this approach allows fine-grained control over what a Java
applet is allowed to do. If you discount the Medium setting because it is the same
as the High setting with one extra capability, you have a either a sandbox or
complete access to everything. As a user, if you allow a Java applet to run with
Low security, then it has complete access to your system. This is unlike the
Netscape model that allows you to control exactly which resources an applet can
access.

4.6.5 The HotJava Security Model
The HotJava browser has quite a flexible approach to security from a user‘s point
of view. A user can exert fine control over the things that an applet can and
cannot do, based on the site it comes from or the certificate it is signed with. The
Programming for the Web 53

security dialogs allow for defaults as well as customised settings, and you can
group sites and certificates together for easy configuration. This greater flexibility
makes it easier for somebody to unwittingly allow an untrusted applet to perform
undesired operations. Applets that are not signed can be allowed privileges that
in the other browsers are available only to signed applets.

Figure 18, “HotJava Basic Security” on page 54 shows the basic security dialog in
HotJava. You can set the options for both signed and unsiged applets. The
advanced options, shown in Figure 19, “HotJava Advanced Security” on page 55
allow you to configure specific permissions granted to applets. This is very
comphrensive and allows control over things like specific sites the applet can or
cannot connect to, exact directories on your disk that the applet can or cannot
write to, and the system properties the applet is allowed to access.

Figure 18. HotJava Basic Security
54 Accessing CICS Business Applications from the WWW

Figure 19. HotJava Advanced Security

HotJava is relatively new and less sophisticated than the other browsers. One
thing is missing, which is available with Microsoft Internet Explorer and Netscape
Communicator: a centralized administration point. By using administration
products from Microsoft or Netscape, end users browsers can be configured by a
single administrator. The configurations can then be locked so that users cannot
alter them. This allows administrators to decide on a security policy that all
browsers must follow, and prevent the end users from circumventing this. In a
company Intranet environment, enforcing a security policy may be very important.

4.6.6 Digital Certificates
A digital certificate is a data structure that contains three pieces of information: a
name, a Public Key and a Digital Signature computed over the other two. The
certificate is signed by a trusted third party called a Certification Authority (CA). It
is the job of the CA to verifiy that the name information is correct. If you trust the
CA, then digital certificates provide a safe method for distributing public keys via
an electronic medium.
Programming for the Web 55

4.6.6.1 How to use a Digital Certificate
Your copy of Netscape Communicator or Microsoft Internet Explorer comes
loaded with the digital certificates of trusted CA’s such as Verisign
http://www.verisign.com, and the IBM World Registry
http://www.internet.ibm.com/commercepoint/registry/index.html. Figure 20 on
page 56 shows the Netscape Communicator security info dialog, displaying a list
of the CA certificates. If you create your own CA for Intranet use, then your
browsers must be loaded with your CA certificate. This function is provided by the
Certificate Server, and is the only manual configuration step that the browser
users must do before running applets signed with your developer certificates.
Figure 21 on page 57 shows a Netscape Communicator browser importing a new
CA certificate.

Figure 20. Netscape Certificates Dialog
56 Accessing CICS Business Applications from the WWW

Figure 21. Netscape Import CA Certificates

4.6.6.2 Why Sign Java Applets?
In order for downloaded Java code to have access to a system beyond the
sandbox, you must explicitly grant it privileges. In order to make the decision as
to whether to grant the access or not, certain conditions must be met.

Authenticity
You must be able to authenticate who developed the applet, and that you trust
that person. With off-the-shelf software, the packaging usually identifies the
software publishers explicitly, and other physical identifiers like holograms and
certificates of authenticity allow you to trust the program you install on your
machine. When you download an applet into your Web browser, you do not get
the same guarantees about where the software has come from, or who
developed it.

When Java code is digitally signed, you have reliable information about who
developed the code. You can then make the decision about what you are going to
allow the program to do. When the Web server employs secure sockets, you can
be assured of where the code is being downloaded from.
Programming for the Web 57

Integrity
You need to be sure of the integrity of the code that you download. If it has been
altered in any way during transmission, you cannot trust it. Encryption and digital
signatures ensure integrity.

Accountability
When you receive code that is signed by a particular developer or organization,
you can be sure that they cannot deny it is their code. Only they should have
knowledge of their secret key, which is used to create the signature. If something
does go wrong, you know who is accountable for the mistakes.

4.6.6.3 Obtaining a Digital Certificate
The javakey program and Microsofts code signing technology allow you to create
your own certificates for signing Java code. The Java security Web pages at Sun
http://java.sun.com/products/jdk/1.1/docs/guide/security/index.html describe
how to create certificates using javakey and “Microsoft Authenticode Technology”
on page 61 shows how to use the makecert program to create a Microsoft code
signing certificate.

Obtaining a Netscape code signing certificate is more difficult. You can purchase
one from a commercial CA such as Verisign Inc. http://www.verisign.com or
Thawte Consulting http://www.thawte.com. The average cost is about $20 per
year. Verisign calls the certificates enabled for code signing Class 2 or Class 3
certificates. Class 2 are for personal use while Class 3 are corporate certificates
and cost significantly more. At the time of writing, Verisign issue these certificates
only to US and Canadian residents. Netscape maintains a Web page
ehttps://certs.netscape.com of companies that issue certificates to clients, but
they are limited today to Belgium, Luxembourg, Brazil, Spain, and South
America. Thawte Consulting offers services in more countries, but not for code
signing certificates in every country. The lack of services in countries other than
the U.S. is due to the difficulty in verifying individual identities. The U.S. Social
Security number provides a consistent method to uniquely identify a U.S.
resident, while not all other countries have a similiar mechanism. Verisign and the
other companies also offer Microsoft code signing certificates if you need to
publish software for the Internet.

If you do not want to pay money for a Verisign certificate, or you live in a country
where certificates are not available, you can download the Netscape Certificate
Server evaluation copy. This allows you to set yourself up as a certificate
authority, within an Intranet environment, and issue yourself and others,
developer‘s certificates. These certificates, like the Microsoft developer‘s test
certificates, will not be trusted on the public Internet. Using the Certificate Server
is a good way to learn about the technology and become familiar with the
processes of obtaining and using digital certificates. It is quite simple to install
and set up, and comes with comprehensive instructions. There is also a patch
available from Netscape that allows the Certificate Server to issue certificates to
the Microsoft Internet Explorer browser. A detailed description of the Netscape
Certificate Server is beyond the scope of this chapter, but it is worth looking at for
evaluation.

4.6.6.4 Creating Signed Java Applets
This subsection describes the steps required to build a signed archive file for
Netscape Communicator, Microsoft Internet Explorer, and HotJava. Signing the
58 Accessing CICS Business Applications from the WWW

applet class files and placing them in an archive enables browsers to give
aditional privileges over unsiged applets.

4.6.6.5 The Netscape Tools
Two tools for signing Java code are available from Netscape: JAR Packager and
zigbert. JAR Packager is a Java applet that is run within Netscape Communicator
and has a graphical user interface. Zigbert is a command line tool, available for
Windows NT. Both can be downloaded free of charge from the Netscape
developer site http://developer.netscape.com. JAR Packager proved slow and
unable to handle large numbers of files. In order to create a JAR file which
included all the VisualAge support classes and our applet, zigbert had to be used.

Follow these steps to create a signed JAR file using zigbert. The steps assume
that zigbert has been downloaded and installed on your machine, and the
directory is in the PATH:

1. You must have a certificate installed in your Netscape Communicator that is
enabled for object signing. See “Obtaining a Digital Certificate” on page 58 for
ways to obtain this certificate. Make a note of the name by which the
certificate is referred to when you installed into the Netscape Communicator
database.

2. Place all the files that compose your applet into an empty directory, making
sure the directory structure is preserved. If you are using VisualAge, use the
export project option and specify the directory, but do not select the export
JAR file option.

To sign all the files, issue the following command (all on one line):

zigbert -d "c:\program files\netscape\users\default" -k \
"Stephen Longhurst’s IBM ID" c:\build

This assumes that the netscape certificate database files are in the directory
c:\program files\netscape\users\default . This is usually the case. The files
are named cert*.db and key*.db. The name of the signing certificate is
"Stephen Longhurst’s IBM ID". You can check the names of your certificates
by using the Security Info panel in Netscape Communicator and looking under
the Certificates->Yours section. The directory where all the files have been
expanded to is c:\build.

You will be prompted for the password that protects the certificate you specify.
After the command has completed, a new directory called META-INF is
created under the top level (c:\build). This directory contains the manifest file
for the JAR archive and the Netscape-specific signing information files.

3. Use the zip command that is supplied with zigbert to create the JAR file from
the directory. Change to the top level directory (c:\build) and use the
command:

zip -r ns4applet.jar .

A file is created called ns4applet.jar. This is the JAR file that is uploaded to the
Web server and is referenced in the archive tag of the HTML page. You can
use any name you like for the output file.

Figure 22 and Figure 23 on page 60 shows sample script files that were used to
generate signed applet archive files:
Programming for the Web 59

Figure 22. Create a JAR File Signed for Netscape Communicator

Figure 23. Create a CAB File Signed for Microsoft Internet Explorer

4.6.6.6 The Sun JDK Tools
The Sun Java Developers Kit (JDK) Version 1.1 includes the javakey tool that
allows you to create, display, and save certificates. It is also used to sign JAR
files for use with HotJava. Javakey manages a database of entities. These
entities are either identities or signers and the user or administrator can declare
certain entities to be trusted.

The Sun Microsystems Web site contains comprehensive instructions on using
the javkey tool as well as a tutorial on signing applets. The page is entitled
"Security and Signed Applets"•.

REM makens4.bat
REM Script to digitally sign a directory structure of files
REM and then package them up into a JAR file.
REM Use on Windows NT
REM
REM Parameter 1 = Directory to package up
REM Parameter 2 = Name of output file
REM
REM Example Usage : makens4 g:\build ns4applet.jar
REM

SET ZIGBERT_DIR=c:\JARPackager\zigbert
SET CERTDB_DIR="c:\program files\netscape\users\default"
SET CERTIFICATE="Stephen Longhurst’s IBM ID"

%ZIGBERT_DIR%\zigbert -d %CERTDB_DIR% -k %CERTIFICATE% %1
cd %1
%ZIGBERT_DIR%\zip -r %2 .

REM makeie.bat
REM Script to digitally sign a directory structure of files
REM and then package them up into a CAB file
REM Use on Windows NT
REM
REM Parameter 1 = Directory to package up
REM Parameter 2 = Name of output file
REM
REM Example Usage : makeie g:\build iecashier.cab
REM

SET SDK_DIR=c:\sdk-java.20\bin
SET CERT="g:\ie_certs\itsokey.spc"
SET NAME=ItsoKey
cd %1
%SDK_DIR%\cabarc -r -p -s 6144 n %2 Residency* Domain* COM* ibm*
%SDK_DIR%\signcode -j javasign.dll -jp low -spc %CERT% -k %NAME% %2
%SDK_DIR%\chkjava %2
60 Accessing CICS Business Applications from the WWW

For the purposes of this project, actually signing a JAR file for use with HotJava
was not necessary. HotJava can be configured to allow unsigned applets
privileges beyond the sandbox. We used this mechanism when testing the applet
with HotJava. You need to create a separate JAR file for use with HotJava
because one signed with Netscape’s tools will fail to load properly. To create the
JAR file, use the jar tool in the directory where your class files are expanded.

jar -cvf output.jar *

4.6.6.7 Microsoft Authenticode Technology
You can use Microsoft’s tools to create digitally signed CAB files, giving your
applets access to system resources when running in Microsoft Internet Explorer.
You need to have the Microsoft Java Software Developers Kit (SDK). the
currently available version is Version 2.0 beta 2. The SDK provides a tool called
makecert that allows you to generate a test software publishers certificate to sign
the CAB file with. The Java SDK is available from the Microsoft Web site.

The followings steps are detailed on the Microsoft Web site in a document
entitled "Signing a Cabinet File with Java Privileges using Signcode". It is
assumed that the Java SDK is installed on your machine with the bin directory in
the PATH.

1. Create a certificate with the makecert program using the following command:

makecert -sk DeveloperKey -n "CN=Company Development" TestCert.cer

2. Use the cert2spc program to turn the certificate into a test software publishers
certificate:

cert2spc TestCert.cer TestPublish.spc

3. Extract all your Java applet class files into an empty directory. This step is
equivalent to Step 2 in “The Netscape Tools” on page 59. Use the cabarc tool
to create a CAB file containing all the files:

cabarc -r -p -s 6144 n output.cab *

4. Use the sign code program to sign the CAB file with your software publishers
certificate (this is all one command):

signcode -j javasign.dll -jp low -spc TestPublish.spc -k DeveloperKey
output.cab

The -jp options specifies the security level for which the CAB file is signed. If
your code needs to do anything beyond the sandbox other than access the
scratch pad, it must be signed with low security.

4.6.7 Java Application Security
Enabling SSL security on your Web server (see “Secure Sockets Layer” on
page 24) enables Java code to be downloaded securely, providing code integrity.
Digital certificates provide mechanisms for authenticity and accountability,
allowing users to trust applets. Neither of these mechanisms automatically
provides security for any communication that the Java code then independently
performs. It is up to the applet code that you write to provide security for these
connections. Currently, there is no easy way to do this for the CICS Gateway for
Java. Future product enhancements will include providing encryption, in the form
of SSL, for the CICS Gateway for Java. For the Intranet, this is not an inhibitor to
using the technology. Use on the Internet will be restricted to applications that do
not require confidentiality of information, until encryption is supported.
Programming for the Web 61

4.6.8 Security Features in Java 1.2
The Java 1.1 platform does not provide concrete implementations of some key
security features. Certain certificate formats and algorithms will be introduced
only with Java 1.2. The certificate management infrastructure includes support for
X509v3 certificates. A new permission-based security mechanism is also
proposed, similiar to the Netscape Capabilities API. This will allow common code
that requests access outside the sandbox to be written. It will be compatible with
all browsers and Java environments. The problem today is the need for
browser-specific code, the Netscape Capabilities API, to be written. The support
for X509v3 certificates will remove the need to sign applet code for specific
browsers. More information on security and the proposed specification for Java
1.2 is available at Sun’s Web site.

4.6.9 Summary
This section provides a short summary of the security issues you should be
aware of when developing a Java-based network computing application.

4.6.9.1 Writing Full Function Java Applets
You need to be aware of how Web browsers enforce security on Java applets if
you want to write code that needs access to the system beyond that allowed by
the sandbox model. Different browsers use different mechanisms to check if code
can be trusted:

 • For use with Netscape Communicator, your code must include calls to the
Capabilities API. You create a JAR file that must be digitally signed with a
code-signing certificate compatible with the Netscape tools.

 • For use with HotJava, you must inform the browser users of the requirements
of your applet. They then have to configure the browser to allow the applet the
access it requires. Your code may or may not be digitally signed, but if it is,
you must create a JAR file and use the javakey program to sign it. This JAR
file must be different from the one that is used with Netscape Communicator.

 • For use with Microsoft Internet Explorer, you must create a CAB file that is
digitally signed and specify the level of access that your code requires. You
need a code-signing certificate that is compatible with the Microsoft
Authenticode tools.

When using a digital certificate, the browser must recognize the Certificate
Authority that signed your certificate. Either you need to obtain the certificate
from a recognized authority, such as Verisign, or import your authority‘s certificate
into the browser and mark it as trusted.

4.6.9.2 Securing the Applet Communication
The CICS Gateway for Java Version 1 classes do not use encryption when
transferring data from the applet to the server. This will not be secure in an
Internet environment. You may need to think of other communication options if
using CICS, or wait for security features to be included with the CICS Gateway
for Java. You can also use third party libraries to implement encryption of your
commareas and database information independently of the CICS Gateway for
Java or JDBC. JDBC connections do not employ encryption, and face the same
problems as the CICS Gateway for Java communication.
62 Accessing CICS Business Applications from the WWW

4.6.9.3 Web Server Security
If you require authenticated access to your Web server, there are two options.
You can employ basic authentication or use SSL client authentication. When the
server is required to authenticate a request, you can use custom-written code to
access existing security services, or design new policies using the server
administration tools. For example, your server might invoke a CICS program that
uses the CICS API command EXEC CICS VERIFY PASSWORD to authenticate a
particular user.

4.6.10 References
The following Web sites offer usefu information already referred to in text:

 • http://www.javasoft.com

 • http://developer.netscape.com

 • http://www.javauniverse.com/Developer/97/06/SigningApplets/index.html

 • http://www.microsoft.com/java/security/jsecwp.htm

 • http://www.microsoft.com/java

 • http://www.microsoft.com/java/pre-sdk/contents/sdk0527.html

 • http://java.sun.com/products/jdk/1.1/docs/guide/security/index.html

 • http://www.verisign.com

 • http://www.thawte.com

 • https://certs.netscape.com

 • http://www.internet.ibm.com/commercepoint/registry/index.html

 • http://java.sun.com/products/jdk/preview/docs/

4.6.10.1 Related Reading
The IBM Internet Connection Secure Server Webmasters Guide Version 2
Release 2 for OS/390 (or the other supported platforms) provides a basic
introduction to Web server security. It shows how to configure the Web server for
basic authentication and SSL security.

Internet Cryptography by Richard E. Smith, published by Addison-Wesley (ISBN
0-201-92480-3) is a very good source of information for anyone with very little
knowledge of cryptography, but who needs to make technical decisions about
cryptographic security.

The IBM Internet Web site contains lots of information on security, not only IBM
security products but security in general. The page can be accessed on the
Internet by the URL http://www.ibm.com/security.

4.7 JavaScript

JavaScript is a new scripting language which is being developed by Netscape.
With JavaScript it is easy to create interactive Web pages. JavaScript is
supported by most of todays browsers (Netscape 2.0+ and Microsoft Internet
Explorer 3.0+). It is important to know that JavaScript is not the same as Java.
They do have similarities but in some ways also fundamentaly differ from each
other.
Programming for the Web 63

See the following reference for a complete description of JavaScript:

http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/index.html

4.7.1 JavaScript - Java Comparison
The JavaScript language resembles Java but does not have Java’s static typing
and strong type checking. JavaScript supports most Java expression syntax and
basic control flow constructs. In contrast to Java’s compile time system of classes
built by declarations, JavaScript supports a runtime system based on a small
number of data types representing numeric, Boolean, and string values.
JavaScript has a simple, instance-based object model that still provides
significant capabilities. JavaScript also supports functions without any special
declarative requirements. Functions can be properties of objects, executing as
loosely typed methods.

In contrast to Java, JavaScript descends in spirit from a line of smaller,
dynamically typed languages like HyperTalk and dBASE. These scripting
languages offer programming tools to a much wider audience because of their
easier syntax, specialized built in functionality, and minimal requirements for
object creation.

Table 5. JavaScript - Java Comparison

4.7.2 Embedding JavaScript into HTML
JavaScript code can be embedded into HTML through 4 different methods:

 • Using the SCRIPT tag.

 • Specifying a file of JavaScript code.

 • Using JavaScript expressions as HTML attribute values.

 • Scripting event handlers.

Following we give you an overview of the first two methods. See the following
reference for more information on JavaScript:

http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/index.html

4.7.2.1 Using the SCRIPT Tag
The <SCRIPT> tag is an extension to HTML that can enclose any number of
JavaScript statements as shown here:

JavaScript Java

Interpreted (not compiled) by client. Compiled byte codes downloaded from
server, executed on client.

Object-based. Uses built-in, extensible
objects, but no classes or inheritance.

Object-oriented. Applets consist of object
classes with inheritance.

Code integrated with, and embedded in,
HTML.

Applets distinct from HTML (accessed from
HTML pages).

Variable data types not declared (loose
typing).

Variable data types must be declared (strong
typing).

Dynamic binding. Object references
checked at runtime.

Static binding. Object references must exist
at compile-time.

Cannot automatically write to hard disk. Cannot automatically write to hard disk.
64 Accessing CICS Business Applications from the WWW

<SCRIPT>
JavaScript statements...

</SCRIPT>

A document can have multiple SCRIPT tags, and each can enclose any number
of JavaScript statements.

Because there are maybe browsers around who don’t support JavaScript, the
JavaScript statements can be hidden from being interpreted as text.

<SCRIPT>
<!-- Begin to hide script contents from old browsers.
JavaScript statements...
// End the hiding here. -->
</SCRIPT>

Since browsers typically ignore unknown tags, non JavaScript capable browsers
will ignore the beginning and ending SCRIPT tags. All the script statements in
between are enclosed in an HTML comment, so they are ignored too. JavaScript
capable browsers properly interprets the SCRIPT tags and ignore the line in the
script beginning with the double-slash (//).

Following is an example of an embedded JavaScript:

Figure 24. Sample of an HTML embedded JavaScript

4.7.2.2 Specifying a File of JavaScript Code
The Source attribute SRC of the <SCRIPT> tag specifies a file as the JavaScript
source (rather than embedding the JavaScript in the HTML). For example:

Figure 25. Importing JavaScript code

Note that the </SCRIPT> tag is necessary!

This methode is specially usefull for sharing code/functions among different
HTML pages!

<html>
<body>

This is a standard HTML document

<script language="JavaScript">
<!-- Hide script from old browsers.

document.write("This is text from JavaScript!")

// End hiding here. -->
</script>
<p>This is text from regular HTML
</body>
</html>

<HEAD>
<TITLE>My Page</TITLE>
<SCRIPT SRC="common.js">
...
</SCRIPT>
</HEAD>
Programming for the Web 65

JavaScript statements within a <SCRIPT> tag with an SRC attribute are ignored
unless the inclusion has an error. For example, we could complete the HTML
header above with an error check methode:

Figure 26. Error checking on JavaScript import function

The SRC attribute can specify any URL, relative or absolute. For example:

<SCRIPT SRC="http://home.netscape.com/functions/jsfuncs.js">

External JavaScript files cannot contain any HTML tags: they must contain only
JavaScript statements and function definitions.

External JavaScript files should have the file name suffix .js, and the server must
map the .js suffix to the MIME type "application/x-javascript", which the server
sends back in the HTTP header.

If the server does not map the .js filename suffix to "application/x-javascript"
MIME type, the browser will not load the JavaScript file specified by the SRC
attribute properly. This requirement does not apply if you are using local files.

For further information on JavaScript see:

http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/index.html

or

http://www.webconn.com/java/javascript/intro/

4.8 Hypertext Markup Language

HTML is one of the major attractions of the Web. It has an architected set of tags
that should be understood by all Web browsers and Web servers (although as
new features are added to HTML, they may not be supported by older Web
browsers). These tags are device independent. The same document can be sent
to a personal computer, an AIX or UNIX machine, or a mainframe, and the Web
server on each machine can understand the HTML and build the data stream to
display it on the target device.

Once document writers and programmers have mastered HTML, those skills are
applicable on any operating system on any machine, provided that machine has a
Web browser.

Because HTML supports hypertext, it allows document writers to include links to
other HTML documents. Those documents might be on the same machine as the
original, or they might be on a machine on another network on the other side of
the world; such is the power of HTML links.

We do not propose to document HTML itself here. For additional information, see
Using the Information Super Highway and Spinning the Web. You can also find
lots of information on the Web itself. One good place to start is:

<HEAD>
<TITLE>My Page</TITLE>
<SCRIPT SRC="common.js">
document.write("Included JS file not found")
</SCRIPT>
</HEAD>
66 Accessing CICS Business Applications from the WWW

 http://www.w3.org/hypertext/WWW/MarkUp/MarkUp.html

4.8.1 Forms
The original specification for HTML did not provide a mechanism for the Web
browser to pass information back to the Web server. Data could only flow from
the Web server to the Web browser. Forms are an enhancement to HTML
included in the HTML Version 2.0 draft specification. They allow data to flow from
Web browser to Web server in an architected way. All new Web servers and Web
browsers support forms.

Forms are analogous to CICS basic mapping support (BMS) maps (although the
analogy is by no means perfect!). The Web server can prompt the user of the
Web browser for information, and after the user enters that information, it is
passed back to the Web server for a CGI script to process and act on the data
entered into the form.

Forms are an extension of HTML and contain a set of HTML tags that allow a
user to create a set of input fields in an HTML document. Each field is given a
name, so that when the user enters data, the Web server can identify what data
has been placed in what field. The fields are these:

 • ACTION:

Each form has an ACTION definition. This defines the CGI script on the Web
server that is invoked to handle the incoming forms data when it is returned to
the server. So when the Web server receives user input from the form in
Figure 27 on page 68, it is the CGI script called REXXFORM that is invoked to
process the request. The ACTION is resolved by the Web browser to a URL
that is sent back to the Web server.

 • METHOD:

The METHOD statement on a form defines the way in which the user input for
that form is passed back to the Web server There are two methods available:
GET and POST.

The results from forms specifying METHOD=GET are concatenated to the end of
the URL string that is returned to the Web server when the user enters the
data. The Web server passes the user input to the CGI script in the
QUERY_STRING environment variable. GET is not the strategic way of passing
forms data; it limits the amount of data that can be passed between the Web
server and Web browser. When forms programming was first introduced it was
the only mechanism available for passing from the Web browser to the Web
server. For the formal HTTP specification of GET, see the following URL:

http://www.w3.org/hypertext/WWW/Protocols/HTTP/Methods/Get.html

METHOD=POST is the recommended way of passing forms data from the Web
browser to the Web server. The data is not concatenated with the URL, but is
sent as the body of a new document.

The forms input data is passed to the standard input stream of the CGI script
by the Web server. For the formal HTTP specification for POST see

http://www.w3.org/hypertext/WWW/Protocols/HTTP/Methods/Post.html
Programming for the Web 67

4.8.1.1 Forms Programming
Forms programming is a simple and effective means of transaction processing.
The flow is as follows:

1. The user enters a URL at the Web browser.

2. The request is passed to the Web server, which sends the form corresponding
to the request back to the Web browser.

Either the form is generated dynamically by a CGI script, or it can be a
predefined form that is simply retrieved by the Web server. The form contains
the name of the CGI script to be invoked when it is returned to the Web server.

3. The form is displayed.

4. The user enters the required data.

5. The user input is passed from the Web browser to the Web server.

6. The CGI script encoded in the form is invoked by the Web server to process
the input received. If this involves sending a new form to the Web browser, we
are back at Step 3.

Figure 27 on page 68 is a simple example of an HTML page containing a form.
Note how easy it is to include graphics in the form using the HTML tag, and
that the form need not take up the whole of an HTML document–in fact you can
have multiple forms in any document being displayed, although the Web browser
can return the details of only one form to the Web server.

Figure 27. Sample HTML Form

Figure 28 on page 69 is the CGI script that is invoked by the form in Figure 27.
The script takes the name and address entered into the form, and uses them as
input for a new HTML document that is built dynamically by the program itself,
rather than retrieved from a file. This is an example of an "HTML-aware"
application.

<!doctype html public "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
<TITLE>NAME AND ADDRESS
</TITLE> </HEAD>
<BODY>
<IMG SRC="http://ladoga.sanjose.ibm.com/slwhtml/slwimg/cwmast.gif"
 ALT="CICSWEB Masthead" ALIGN="TOP">

<FORM METHOD=POST ACTION="/cgi-bin/REXXFORM" >
<P>Enter your name and address in the fields below:
<P>Name: <INPUT TYPE="text" NAME="name" SIZE=30 VALUE="">
<P>Address: <INPUT TYPE="text" NAME="address" SIZE=70 VALUE="">
<P>Click here to return the form to the server:
<INPUT TYPE="submit" NAME="submit-b" VALUE="SEND">
</FORM>
</BODY></HTML>
68 Accessing CICS Business Applications from the WWW

Figure 28. REXX CGI Script to Process Form

4.8.1.2 Using Forms to Save Information about the State of Processing
The question of saving information about the state of processing is introduced in
Chapter 2.5, “Matters of State” on page 11. In a transaction processing
environment, the Web server sends the same form to multiple users. Because
there can be multiple steps in the transaction, the server needs some mechanism
to identify and track the transaction associated with the form it is currently
processing.

One of the most popular techniques for saving information about the state of
processing in the Web environment is to use the hidden fields facility provided by
HTML forms.

Hidden fields are input fields with a type of hidden. They are not displayed by the
Web browser and the user cannot enter data into them. They allow the Web
server to store information related to the form–for example, user ID, conversation

/* A Forms Program */
cl = value(’CONTENT_LENGTH’,,’OS2ENVIRONMENT’)
data = charin(,,cl)

/* Set input fields from the incoming data stream */
data=data’&’
do until data=’’
 parse var data assign ’&’ data /* Parse data for input fields */
 parse var assign inname ’=’ value /* ’name=’ to assign, value to value */
 value = translate(value,’ ’,’2b090a0d’x) /* Get rid of ’+’, CR, LF */
 inname = packur(inname) /* call packur to decode escape chars */

 /* Put the input parameters into corresponding variables */
 select
 when inname = "name" then name = packur(value)
 when inname = "address" then address = packur(value)
 when inname = "submit-b" then submitb = packur(value)
 otherwise say "<P>Unrecognised parameter passed"
 end /* select */
end

/**/
/* Now use the information retrieved to build */
/* a new map to be sent to the user */
/**/
say "Content-type: text/html" /* Build HTTP Header */
say""

parse var name fname ’ ’ sname
say "<TITLE> Name and Address Confirmation</ETITLE>"
say "<H1>Thanks for the information"
say fname"</H1>"
say "<P> We will be sending your free sample to:"
say "<P>" address

return
Programming for the Web 69

identifier, or stage reached–in the form itself, eliminating the need to save such
information on the Web server machine.

Beginning Figure 29 on page 70 to Figure 31 on page 72 shows a REXX
application that uses hidden fields to save state information about the
conversation taking place between the user of the Web browser and the Web
server. Note the use of hidden fields to save the name of the user; in our simple
case, this is the term ("handle") that uniquely identifies the user. In a more
complex system, this might be a unique handle generated by the Web server
itself.

The program allows the user to build a shopping list, and stores the list of items
previously added to the list in the form itself in the hidden field with name list.

Figure 29. (Part 1 of 3) REXX Program Using Hidden Fields

/**/
/* A Forms Program which will use information about the state of */
/* of processing to identify the source of the request, and retrieve*/
/* any stored data associated with that user from the form. */
/**/

env = ’OS2ENVIRONMENT’
cl = value(’CONTENT_LENGTH’,,env)

if cl > 0 then do
 newitem = ""
 list = ""
 data = charin(,,cl)

 /* Set input fields from the incoming data stream */
 data=data’&’
 do until data=’’
 parse var data assign ’&’ data /* Parse data for input fields */
 parse var assign inname ’=’ value /* ’name=’ to assign, value to value*/
 value = translate(value,’ ’,’2b090a0d’x) /* Get rid of ’+’, CR, LF */
 inname = packur(inname) /* call packur to decode esc chars */

 /* Put the input parameters into corresponding variables */
 select
 when inname = "name" then do
 name = packur(value)
 parse var name fname ’ ’ sname
 end
 when inname = "address" then address = packur(value)
 when inname = "submit-b" then submitb = packur(value)
 when inname = "state" then state = packur(value)
 when inname = "list" then list = packur(value)
 otherwise do
 newitem = packur(value)
 newitem = newitem||’,’
 end
 end /* select */
 end
70 Accessing CICS Business Applications from the WWW

Figure 30. (Part 2 of 3) REXX Program Using Hidden Fields

/* Now determine the state of this conversation */
 /* */
 /* state=NEW means that a user has just registered. */
 /* Update the state, and send them a shopping form. */
 if state="NEW" | state="OLD" then do
 if newitem \= "" then do
 list = list||newitem
 end
 state="OLD"

 say "Content-type: text/html"
 say""
 say ’<INPUT TYPE="HIDDEN" NAME="state" VALUE=’state’>’
 say’<HTML><HEAD><TITLE>Display Shopping List’
 say’</TITLE> </HEAD>’
 say’<IMG SRC="/icons/cwmast.gif"’
 say’ALT="CICSWEB Masthead" ALIGN="TOP">’
 say’<FORM METHOD=POST ACTION="/cgi-bin/rcgi3" >’
 say ’<INPUT TYPE="HIDDEN" NAME="state" VALUE="’state’">’
 say ’<INPUT TYPE="HIDDEN" NAME="name" VALUE="’name’">’
 say ’<INPUT TYPE="HIDDEN" NAME="list" VALUE="’list’">’
 say ’<INPUT TYPE="HIDDEN" NAME="address" VALUE="’address’">’

 len = length(list)
 if len > 0 then do
 /* IF there is already a list for this user, display the contents */
 say’<P>Here are the items currently recorded on your shopping list:’
 say’’
 data = list
 do until data=’’
 parse var data item ’,’ data
 if item \=’+’ then
 say’’translate(item)
 end /* data loop */
 say’’
 end /* display list */
 else /* No list currently exists for this user */
 say’<P>There are no items currently on your shopping list’

 say’<P>Enter items you wish to add to the list here, separating’
 say’them with a comma(,):’
 say’<P>Name: <INPUT TYPE="text" NAME="item" SIZE=30 VALUE="">’
 say’<P>Click here to add this input to the list:’
 say’<INPUT TYPE="submit" NAME="submit-b" VALUE="SEND">’
 say’</FORM>’
 end
end
Programming for the Web 71

Figure 31. (Part 3 of 3) REXX Program Using Hidden Fields

Saving information about the state of processing in forms does, however, have
some drawbacks:

 • All the information about the state of processing in the form has to be sent
across the network to the Web browser and back again. If there is a large
amount of information about the state of processing (for example, our
shopping list might be very big), this will generate a lot of extra traffic across
the network.

This also has security implications, because the information about the state of
processing might contain sensitive data that you do not want to flow across
the network.

 • The information about the state of processing will survive for only as long as
the current dialog between Web server and Web browser lasts. If for some
reason the user of the Web browser decides to close down and restart the
Web browser, all the information about the state of processing in the form is
effectively lost.

You may therefore decide that your information about the state of processing is
too important to reside solely in the form itself, and keep all or some of it on the
Web server. Beginning with Figure 32 on page 73 to Figure 34 on page 75
illustrates how this might be done in an OS/2 environment using a CGI script. The
information about the state of processing (in this case our shopping list) is saved
in a file on the Web server machine, and the only information about the state of

 else
 /**/
 /* There is no forms data to be read in, so this must be */
 /* a new conversation. Ask the user to enter the name */
 /* and address so that we can retrieve any data held */
 /**/
 do
 say "Content-type: text/html"
 say""

 say’<!doctype html public "-//IETF//DTD HTML 2.0//EN">’
 say’<HTML><HEAD>’
 say’<TITLE>NAME AND ADDRESS’
 say’</TITLE> </HEAD>’
 say’<IMG SRC="/icons/cwmast.gif"’
 say’ALT="CICSWEB Masthead" ALIGN="TOP">’

 say’<FORM METHOD=POST ACTION="/cgi-bin/rcgi3" >’
 say ’<INPUT TYPE="HIDDEN" NAME="state" VALUE="NEW">’
 say’<P>Enter your name and address in the fields below:’
 say’<P>Name: <INPUT TYPE="text" NAME="name" SIZE=30 VALUE="">’
 say’<P>Address: <INPUT TYPE="text" NAME="address" SIZE=70 VALUE="">’
 say’<P>Click here to return the form to the server:’
 say’<INPUT TYPE="submit" NAME="submit-b" VALUE="SEND">’
 say’</FORM>’
 end /* No forms input on call */

return
72 Accessing CICS Business Applications from the WWW

processing required in the form is a unique identifier that is used to identify the
stored information about the state of processing for this conversation.

Figure 32. (Part 1 of 3) CGI Script Saving Data on the Web Server

 /***/
/* A Forms Program that will use information about the */
/* state of processing to identify the source of the */
/* request, and retrieve any stored data associated with */
/* that user from the form. */
/***/
/* If there is any forms data for us to read */
/* read it in and pass it. */
env = ’OS2ENVIRONMENT’
cl = value(’CONTENT_LENGTH’,,env)

if cl > 0 then do
 newitem = ""
 data = charin(,,cl)

 /* Set input fields from the incoming data stream */
 data=data’&’
 do until data=’’
 parse var data assign ’&’ data /* Parse data for input fields */
 parse var assign inname ’=’ value /* ’name=’ to assign, value to value*/
 value = translate(value,’ ’,’2b090a0d’x) /* Get rid of ’+’, CR, LF */
 inname = packur(inname) /* call packur to decode esc chars */

 /* Put the input parameters into corresponding variables */
 select
 when inname = "name" then do
 name = packur(value)
 parse var name fname ’ ’ sname
 end
 when inname = "address" then address = packur(value)
 when inname = "submit-b" then submitb = packur(value)
 when inname = "state" then state = packur(value)
 otherwise do
 newitem = packur(value)
 newitem = newitem||’,’
 end
 end /* select */
 end
Programming for the Web 73

Figure 33. (Part 2 of 3) CGI Script Saving Data on the Web Server

 /* Now determine the state of this conversation */
/* state=NEW means that a user has just registered. */
 /* Update the state, and send them a shopping form. */
 if state="NEW" | state="OLD" then do
 if newitem \= "" then do
 result = charout(fname)
 result = charout(fname,newitem)
 result = charout(fname)
 end
 state="OLD"

 say "Content-type: text/html"
 say""

 say ’<INPUT TYPE="HIDDEN" NAME="state" VALUE=’state’>’
 say’<HTML><HEAD><TITLE>Display Shopping List’
 say’</TITLE> </HEAD>’
 say’<IMG SRC="/icons/cwmast.gif"’
 say’ALT="CICSWEB Masthead" ALIGN="TOP">’

say’<FORM METHOD=POST ACTION="/cgi-bin/rcgi4" >’
 say ’<INPUT TYPE="HIDDEN" NAME="state" VALUE=’state’>’
 say ’<INPUT TYPE="HIDDEN" NAME="name" VALUE=’name’>’
 say ’<INPUT TYPE="HIDDEN" NAME="address" VALUE=’address’>’

 result = charin(fname,1,0)
 len = chars(fname)

 if len > 0 then do
 /* IF there is already a list for this user, display the contents */
 say’<P>Here are the items currently recorded on your shopping list:’
 say’’
 data = charin(fname,1,len)
 data = data’,’
 do until data=’’
 parse var data item ’,’ data
 if item \=’+’ then
 say’’translate(item)
 end /* data loop */
 say’’
 end /* display list */
 else /* No list currently exists for this user */
 say’<P>There are no items currently on your shopping list’
 say’<P>Enter items you wish to add to the list here, separating’
 say’them with a comma(,):’
 say’<P>Name: <INPUT TYPE="text" NAME="item" SIZE=30 VALUE="">’
 say’<P>Click here to add this input to the list:’
 say’<INPUT TYPE="submit" NAME="submit-b" VALUE="SEND">’
 say’</FORM>’
 end
end
74 Accessing CICS Business Applications from the WWW

Figure 34. (Part 3 of 3) CGI Script Saving Data on the Web Server

4.9 Utility CGIUTILS

For those using a CERN-based Web server such as the Domino Go Webserver,
the cgiutils utility provides an easy means of building HTTP headers to be sent
in your HTTP response to the Web browser request. Figure 35 shows how you
might call cgiutils to create an HTTP header specifying the content type for an
HTML document.

Utility cgiutils simply builds the appropriate header and writes it to standard
output. If you are familiar with the HTTP header format, you may prefer to build
the headers inside your own application. Doing this in your application is likely to
provide better performance, because it avoids the overhead of invoking a
separate program. Note that header information must be written to the standard
output device before you start writing out the HTML text itself.

Figure 35. Example of REXX CGI Script Using CGIUTILS

 else
 /**/
 /* There is no forms data to be read in, so this must be */
 /* a new conversation. Ask the user to enter the name */
 /* and address so that we can retrieve any data held. */
 /**/
 do
 say "Content-type: text/html"
 say""

 say’<!doctype html public "-//IETF//DTD HTML 2.0//EN">’
 say’<HTML><HEAD><TITLE>NAME AND ADDRESS’
 say’</TITLE> </HEAD>’

 say’<IMG SRC="/icons/cwmast.gif"’
 say’ALT="CICSWEB Masthead" ALIGN="TOP">’

 say’<FORM METHOD=POST ACTION="/cgi-bin/rcgi4" >’
 say ’<INPUT TYPE="HIDDEN" NAME="state" VALUE="NEW">’
 say’<P>Enter your name and address in the fields below:’
 say’<P>Name: <INPUT TYPE="text" NAME="name" SIZE=30 VALUE="">’
 say’<P>Address: <INPUT TYPE="text" NAME="address" SIZE=70 VALUE="">’
 say’<P>Click here to return the form to the server:’
 say’<INPUT TYPE="submit" NAME="submit-b" VALUE="SEND">’
 say’</FORM>’
 end /* No forms input on call */

return

/* Use cgiutils to build HTTP header */
’@cgiutils -ct text/html’
say ’’
say "<H1>Hello World</H1>"
say "<P>Is there anybody out there ?"
return
Programming for the Web 75

4.10 Utility CGIPARSE

The CERN-based Web servers provide another utility called cgiparse. This utility
helps you to parse incoming forms data. Outputs from cgiparse is written to the
standard output device; so you need to pipe its output into your own program so
that you can make use of its output. We found it easier to parse the data in the
application itself (see Figure 28 on page 69 for a simple example of parsing input
variables from a form). Doing it in your application is likely to provide better
performance, because it avoids the overhead of invoking a separate program.

Figure 36 shows how you can use cgiparse to extract form data into REXX
variables in your CGI script.

Figure 36. Example of REXX CGI Script Using CGIPARSE

4.11 Caching

When programming for the Web, you need to be aware that to minimize the flows
across the network, proxy servers usually cache frequently requested documents
rather than retrieving them every time they are requested. You need to bear this
in mind when coding your Web application. If you have an application for which
this can cause problems, you can use the pragma HTTP header when sending
your response (see 4.2, “Hypertext Transfer Protocol Header Information” on
page 35) to specify the no-cache parameter. This tells any proxy server between
your Web server application and the Web browser not to cache this document,
but always get a fresh copy.

When processing a Web browser request, the If-Modified-Since HTTP header,
which can be used for forms using GET, is also useful, because it tells the Web
server that it needs to return the document only if it has been modified since the
specified date.

Most Web browsers also use caching. If you request a document that was
retrieved earlier in your Web browser session, the Web browser redisplays the
earlier document. This can lead to confusion if the document is also a form. You
need to ensure that your Web forms applications can cope with being called with
spurious forms at unexpected times.

/* call cgiparse to get form input data */
say "Content-type: text/html" /* Build HTTP Header */
say ""

"@cgiparse -form -prefix VAR. | rxqueue" /* Parse form variables */
parse pull result /* Format is VAR.var1=’val 1’; VAR.var2=’val 2’; etc.*/
interpret result /* result string is valid REXX syntax, so just do it */
say ’<pre>Result="’result’"’
say ’VAR.submit ="’var.submit’"’
say ’VAR.input_data ="’var.input_data’"</pre>’
return ’’
76 Accessing CICS Business Applications from the WWW

Chapter 5. Accessing CICS/ESA from the Web

A CICS application usually consists of different programs, queues, files and
databases. The user of a CICS application typically works on a 3270 screen or
with an ECI-connected program. Each user interaction starts CICS application
programs within one CICS execution unit and may access/update data from files,
databases, or other shared objects that can be accessed within a transaction.
The CICS Transaction Manager has to keep track of the state of processing.

As the demand for Internet and Intranet services grows, more and more
companies are considering making their existing CICS/ESA applications fully or
partially available to the Web.

Although the known Web programming techniques can be used when accessing
CICS/ESA, the dividing function between Web client, Web server, and CICS
raises new application design issues:

 • Which component is responsible for maintaining information about the state of
processing?

 • Which component is responsible for security?

 • Which component builds and interprets the HTML documents, and analyses
user input?

 • Which component makes the decision to commit changes to CICS-owned
resources?

 • Which component is responsible for restarting the conversation in the event of
a failure?

As you design your CICS/ESA Web application, you must decide how to split
responsibilities among the components. You can delegate as much responsibility
as possible to the CGI script, the CICS Gateway for Java, or even to the Web
client, and only invoke CICS/ESA to perform an update to a CICS resource.
Alternatively, you can do everything in the CICS/ESA environment, and only use
the CGI script or CICS Gateway for Java or the CICS Web Interface to pipe HTML
input and output between the Web browser and CICS/ESA.

Given that CGI scripts and CICS Gateway for Java applets are more suited to
some tasks than CICS/ESA, and CICS/ESA is better suited to others, the best
solution for your system is likely to be one that allocates to each component the
functions it performs best.

The way you split responsibilities between your Web server and CICS/ESA will in
part be dictated by how the two are connected. For example, advanced
program-to-program communication (APPC) and TCP/IP connections between a
Web server and CICS/ESA implement security in different ways. We therefore
look at some of the ways you can connect your Web server to CICS/ESA.

We then look at some of the different types of CICS/ESA applications that can be
invoked from the Web, and illustrate some programming techniques we found
useful when accessing CICS/ESA applications from the Web.
© Copyright IBM Corp. 1998 77

5.1 Connecting CICS to the Internet

The nature of the interface between CICS/ESA and the Web is to some extent
dictated by the infrastructure connecting the two. There are different ways to
connect a Web server to CICS/ESA. We identify and discuss the following
approaches to access CICS applications from the Web:

 • Web Server programming

 • CICS Internet Gateway for 3270 applications

 • OS/390 Web Server with a CGI sample for CICS

 • Client-side programming with CICS Gateway for Java
The Java gateway provides two-tier access from a Java program to a CICS
application. Any Java-enabled browser or Network Computer can dynamically
download a Java applet and access CICS data transparently.
All of the well-known Java benefits are available. The code is downloaded to
the client from the server when it is needed, so there are no problems of
version control. Java allows a full range of GUI techniques, and applications
can be run unchanged on almost any client, completely independent of the
server.

 • Integrating the HTTP protocol with the CICS Web Interface
The CICS Web Interface opens the OS390 or the MVS/ESA system for direct
Web access

These approaches can either be used through direct connections from a Web
browser to the CICS/ESA applications or utilizing indirect connections through a
gateway represented by other members of the CICS family of products.

Table 6 summarizes the alternative offerings for connecting CICS to the Internet.

Table 6. Offerings for Connecting CICS to the Internet

Offering Use Availability

EXCI CGI Sample
Program

Well suited to general
Internet access to
CICS/ESA

SupportPac can be downloaded without
charge from WWW

CICS Internet
Gateway

Supports any 3270
application

Included in:
IBM Transaction Servers
IBM Internet Connection Servers
IBM CICS Clients V2
IBM Connectors

CICS Gateway for
Java

Supports any
Java-enabled Web
browser

Download without charge from WWW.
Included in:
IBM CICS Clients V2
IBM Connectors
78 Accessing CICS Business Applications from the WWW

5.1.1 EXCI CGI Sample Program
The EXCI CGI sample program in Figure 37 provides an interface between the
IBM Internet Connection Server for MVS/ESA (running on MVS Open Edition)
and CICS/ESA. This sample may be tailored by the user to meet specific
application needs.

Figure 37. EXCI CGI Sample Program

5.1.2 CICS Internet Gateway
An IBM-provided CGI script that makes a Web browser appear like a 3270
terminal and hence provides Internet access to existing 3270 applications is
shown in Figure 38. Works in conjunction with the IBM CICS Client.

Figure 38. CICS Internet Gateway

CICS Web Interface Provides direct
connection to
CICS/ESA. Well
suited to Intranet
applications. The CWI
may be used together
with the 3270 Bridge
to run unmodified
terminal-oriented
transactions.

Included in IBM CICS Transaction Server
for OS/390. Installable function of
CICS/ESA V4.1 from 11/96

Offering Use Availability

Web Browser

CICS/ESA V4.1 or later

HTML Domino Go
Webserver
for OS/390

CICS CGI
Program OS/390

CGI EXCI

Web Browser

HTML CICS
Server

AIX, OS/2, Windows NT

CGI EPI CICS
Client

Web
Server

CICS
Internet
Gateway
Accessing CICS/ESA from the Web 79

5.1.3 CICS Gateway for Java
The CICS Gateway for Java, shown in Figure 44, is a Java application that allows
a Java-enabled Web browser or network computer to download a Java applet and
transparently access CICS data and applications. It works in conjunction with the
IBM CICS Client.

Figure 39. CICS Gateway for Java

5.1.4 CICS Web Interface
The CICS Web interface, shown in Figure 40, offers support in the CICS
Transaction Server for OS/390 and provides a TCP/IP connection directly into
CICS, without going through a Web server or gateway. This is the most efficient
way for a Web browser to access CICS/ESA and requires no further products
other than TCP/IP for MVS.

Figure 40. CICS Web Interface

5.2 CICS Access Overview

Figure 41 on page 81 gives you a general overview on how to access CICS
transaction processing services from outside CICS, particularly from the Web. In
the following subsections, we concentrate to the most common Web access
methods only, knowing that many other access ways may be constructed. At the
end of this chapter we suggest what to consider while constructing special CICS
access paths.

Java enabled Browser

CICS
Server

or Network Computer

EPI
CICS
Client

CICS
Gateway
for Java

Web Server

ECI

AIX, OS/2, WinNT, Solaris

Web Browser

CICS/ESA V4.1 or later

CICS/ESA
TCP/IP
for
MVS

OS/390
80 Accessing CICS Business Applications from the WWW

Figure 41. Map showing How to Get CICS Transaction Service

In Figure 41 on page 81 the rounded boxes show the possible external requests.
The plain boxes are targeted by the external requests and represent CICS
programs and CICS transactions. The broken lines enclose CICS provided
interfaces.

The shaded boxes represent the most common methods of accessing CICS from
the Web. Future sections that follow will focus on these methods.

5.2.1 CICS/ESA direct Web Connection Solutions
Accessing CICS/ESA applications through either Internet or Intranet, may bring
up the wish of direct access from a Web browser to CICS/ESA. This lowers the
distributed infrastructure and its related maintenance because there is no
gateway or intermediate Web server needed. However, using these facilities
assumes a clear understanding of all possible security issues to a project such as
any existing security guidelines, or any possible new security threats while
opening an internal production systems to the Internet or Intranet.

5.2.1.1 The CICS Web Interface
The CICS Web Interface is a two-tier method for connecting Web browsers to
CICS Transaction Server. It supports the separation of presentation logic, utilizing

MQSeries

User socket appl.

ONC RPC client

Web browser

JVM Java appl.

Any MVS program

DCE RPC client

Java enabled
Web browser

CICS client application

Web browser E
P

I
E

C
I

E
X

C
I

L
IN

K

AS server
M

V
S

CICS Internet
Gateway

CICS Web
Interface

CICS
ONC RPC

CICS
Sockets

MQ CICS
bridge

CICS program

DFHWBTTA

Bridge

Transaction

CICS business
Logic interface

CICS Server

Telnet client

IBM 3270

CICS
Transaction

Server

DominoGo

CICS
Gateway
for Java

OS/390 CICS Transaction Server environment
Accessing CICS/ESA from the Web 81

any Web browser, from business logic in application design. CWI is available as
an integral part of CICS for MVS/ESA V4.1 and CICS Transaction Server for
OS/390. It can be used for non-terminal CICS transactions as well as starting a
CICS terminal-oriented transaction. In this case, CICS provides a procedure and
supporting tools for mapping 3270 data streams into and out of HTML. This direct
access technique performs very well, which makes it especially useful on Intranet
projects where existing 3270-based applications have to be brought unmodified
to a Web browser. The CWI may be used with the Domino Go Webserver to
provide support for the secure Web protocol SSL, allowing encryption of data
across the network.

In Figure 42 on page 82 the Web browser constructs an HTTP request which is
passed across the network to TCP/IP for MVS in the server. TCP/IP for MVS
relays the request to the Domino Go Webserver, which uses CICS provided code
and user-provided definitions to construct a request for the CICS Web Interface
and route it to the CICS service. If ICSS is bypassed, the CWI links to the
different services needed to prepare and start the CICS request.

Figure 42. Accessing CICS/ESA through the CWI

5.2.1.2 CICS Web Interface Control Flow
Figure 43 on page 83 shows the control flow through the CICS Web interface to a
CICS Transaction without using Domino Go Webserver.

Web Browser
CICS Application Server

HTTP, SSL and SHTTP
ICSS

CICS Web Interface

OS/390

CICS TS for OS/390

TCP/IP
for MVS

CICS Web
Interface

CICS
Service

Domino Go
Webserver
for OS/390

EXCI
82 Accessing CICS Business Applications from the WWW

Figure 43. Control Flow of a CWI Transaction

The steps to process a CWI transaction are these:

1. An HTTP request arrives in TCP/IP for MVS from a Web browser.

2. The server controller monitors the TCP/IP for MVS interface for incoming
HTTP requests, and TCP/IP passes the request to it.

3. The server controller calls DFHCCNV to translate the HTTP request headers
from ASCII to EBCDIC. (HTTP headers are always transmitted in ASCII.)

4. The server controller links to the analyzer. The analyzer interprets the request
and specifies the name of the alias transaction and the CICS program that is
to service the request.

Web Browser
CICS Application Server

HTTP

CICS Web Interface

OS/390

CICS TS for OS/390
TCP/IP
for MVS CICS Web

Interface
CICS
Service

Bridge Transaction

Server
Controller

TCP/IP
for MVS

Alias

Request from

Client

Reply to

Client

1.

14.

2.

7.

3.

4.

5.

6.

9. 10. 11.

12.

13.

15.16.

8.

DFHCCNV
(headers)

Analyzer

DFHCCNV
(user data)

Converter
decode

CICS program

DFHWBTTA

Converter
encode

DFHCCNV

CICS
Web

bridge exit

Transaction
programor
Accessing CICS/ESA from the Web 83

5. If the analyzer requests data conversion, the server controller calls DFHCCNV
to translate the user data in the HTTP request from the client code page to
EBCDIC. (HTTP user data is transmitted in the client code page.)

6. The server controller starts an alias transaction to deal with all further
processing of the request in CICS.

7. The server controller returns to monitor the TCP/IP for MVS interface for
HTTP requests.

8. If the analyzer requests a converter, the alias calls it, requesting the Decode
function. Decode can modify the communication area for the CICS request. If
a terminal-oriented transaction is called, Decode sets up the communication
area for DFHWBTTA.

9. The alias calls DFHWBTTA. In case of a non-terminal-oriented transaction, at
this point the CICS program would be called. The communication area passed
DFHWBTTA is the one set up by Decode. If no converter program was called,
the communication area contains the entire request.

10.DFHWBTTA finds the transaction ID for the terminal oriented transaction and
starts the CICS-supplied bridge transaction that runs the CICS Web bridge
exit, DFHWBLT.

11.The CICS Web bridge exit passes the target transaction ID to the
CICS-supplied transaction, and the corresponding transaction program is run.

12.The output is returned to the communication area.

13.When the program attempts to write to its principal facility, the data is
intercepted by the CICS Web bridge exit, and returned to the alias. If the caller
requested a converter, the alias calls the Encode function of the converter,
which uses the communication area to prepare the response. If no converter
program was called, the alias assumes that the communication area contains
the desired response.

14.If the analyzer requested data conversion, the alias calls DFHCCNV to
translate the HTTP response.

15.The alias returns the results to TCP/IP for MVS and ends.

16.The response is sent back to the Web browser.

5.2.1.3 CWI Security
The CICS security facilities and the Domino Go Webserver security facilities can
be used for user authorization and access control between the browser and the
requested transactions. However, unless we do use the CWI through the Domino
Go Webserver, every connection from a browser to CWI must be considered as
unsecure since the data stream (including user ID and password) is encoded
only. Secure connections through SSL, where all data sent are being encrypted,
can be achieved using CWI through Domino Go Webserver.

5.2.2 The CICS Gateway for Java
The CICS Gateway for Java is a Java application which resides on a Web server
with a CICS Client. Complementing the Gateway are CICS Java classes used in
applets that execute in browsers or network computers.

The CICS Gateway for Java provides three Java classes:

1. Gateway connections to CICS systems through the JavaGateway class.
84 Accessing CICS Business Applications from the WWW

2. External Call Interface (ECI) to CICS through the ECIRequest class.

3. External Presentation Interface (EPI) to CICS through the EPIRequest class.

Although the EPIRequest class can be downloaded from CICS Gateway for Java
on MVS, only the ECIRequest class is supported connecting for a Java client to
the CICS Gateway for Java on MVS.

5.2.2.1 Operation of the CICS Gateway for Java
The CICS Gateway for Java, Figure 44, is a multithreaded TCP/IP server
application that runs separately from CICS. The operation of the gateway can be
shown best by walking through the process step by step:

Figure 44. CICS Gateway for Java

1. The Web browser or the network computer requests an HTML page from a
Web server using the HTTP protocol, which contains a Java applet tag.

2. The Web server returns the requested HTML page containing the tag that
identifies a Java applet.

3. The browser now starts loading the applet and requesting related Java
classes from the Web server.

4. The Web server returns the requested Java classes including the CICS
Gateway for Java classes.

5. When all classes are returned, the browser starts the applet

6. The Java applet on the browser now creates a JavaGateway object to connect
to the CICS Gateway for Java. This establishes communication between the
browser and the long-running Gateway process using Java’s socket protocol.
Furthermore, at this time an LUW token is being created.

7. The Java applet creates an ECIRequest (or EPIRequest) object containing
ECI (or EPI) calls and sends it to the Gateway using the JavaGateway flow
method. The ECIRequest (or EPIRequest) supports most of the ECI (or EPI)
call parameters.
If the CICS Gateway for Java runs on OS390, only the ECIRequest object is
supported.

8. The CICS Gateway for Java now receives the request, unpacks it, and makes
a corresponding ECI (or EPI) call to the CICS Client, which forwards the call to
the intended CICS server.
When the CICS Gateway for Java is running on OS/390, ECI and EPI
interfaces are not available. The CICS client is not available on OS/390 and

Java enabled Browser

CICS
TS 1.2

or Network Computer

 CICS
Gateway
for Java

Web Server

ECI

MVS, AIX, OS/2, WinNT, Solaris

1

2

3

5

4

(Domino Go Webserver)

 EXCI Code

CICS Client
or

(MVS)(EPI)

6
7

8

9

10

11
Accessing CICS/ESA from the Web 85

CICS Transaction Server does not provide these interfaces to OS/390
programs. In this case, CICS Gateway for Java on OS/390 actually uses the
External CICS Interface (EXCI), which is provided by the CICS Transaction
Server. The applets that are clients to the CICS Gateway for Java on OS/390
still flow ECIRequest data, but it is turned into EXCI calls to CICS TS. This
allows the applet code to remain unchanged regardless of where the CICS
Gateway for Java resides and which CICS server is used.

9. The CICS server processes the call, including verifying the user ID and
password if required, and passes control and user data to the application
program.

10.When through processing, the application returns control and data back to
CICS which returns the requested data to the Gateway through the CICS
Client.

11.The Gateway packs these results and returns them to the Java applet running
on the Web browser.

Figure 45 on page 86 shows how the CICS Gateway for Java can run on a
workstation and use the CICS Client to access CICS servers in a three-tier
configuration.

Figure 45. External CICS Gateway for Java

Figure 46 on page 86 shows the CICS Gateway for Java running on the same
workstation as the CICS server, in a two-tier configuration, without the need for a
CICS Client.

Figure 46. CICS Gateway for Java on the Same System with CICS Server

Java Client
CICS
Server 1

CICS
Client

CICS
Gateway
for Java

ECI
CICS
Server 2

CICS
Server 3

SNA

TCP/IP

NetBios

(EPI)

Java Client

CICS
Server

CICS
Gateway
for Java

ECI
86 Accessing CICS Business Applications from the WWW

Figure 47 on page 87 shows the CICS Gateway for Java running on OS/390
accessing CICS TS using the EXCI. In Figure 45 on page 86, the CICS Client can
access multiple servers simultaniously using different protocols. In Figure 46 on
page 86, the CICS Gateway for Java can access only the single local server, and
no other CICS servers. In Figure 47 on page 87 the use of the EXCI allows the
CICS Gateway for Java to access multiple CICS TS regions, but not other CICS
workstation servers.

Figure 47. CICS Gateway for Java on OS/390

5.2.2.2 The CICS Gateway for Java Programming Interface
The CICS Gateway for Java provides five classes through which you can access
CICS programs from Java applets or applications:

 • ibm.cics.jgate.client.JavaGateway

 • ibm.cics.jgate.client.ECIRequest

 • ibm.cics.jgate.client.EPIRequest

 • ibm.cics.jgate.client.Callbackable

 • ibm.cics.jgate.client.GatewayRequest

When an instance of the JavaGateway class is created, the constructor method
requires the TCP/IP address and port number of the CICS Gateway for Java to
which a connection will be made. The object opens a TCP/IP socket connection
to the specified CICS Gateway for Java and this remains open until the close
method is called, or the object is destroyed. The GatewayRequest class is
superclass of ECIRequest and EPIRequest and contains variables common to
both. The Java program creates instances of ECIRequest and EPIRequest and
these objects are used as parameters to the flow method of the JavaGateway
object. The JavaGateway class supports two kind of connections:

1. A network gateway connection, which is a Java client-only connection to a
CICS Gateway for Java (remember that CICS Gateway for Java on MVS
supports only ECIRequest class for transactions).

2. A local gateway connection which, despite its name, does not need a CICS
Gateway for Java at all. Instead, the local gateway connection runs only on
systems that have a CICS client communicating to the CICS system or a CICS
pseudo-client on MVS using EXCI to communicate with the CICS system.

Java Client

CICS
TS 1.2

CICS
Gateway
for Java

EXCI

Single MVS image

CICS
TS 1.2

MVS image in a Sysplax
that supports MRO/XCF

EXCI via
MRO/XCF
Accessing CICS/ESA from the Web 87

Again, if the Java application runs on MVS using the CICS pseudo-client, only
the Java ECIRequest class is supported.

The particular Logical Unit of Work (LUW) token is created and returned by CICS
on the first CICS Gateway for Java invocation. The client application must supply
the LUW token on all subsequent requests to CICS within the same LUW.

The EPIRequest object represents calls to the ECI. The public variable Call_Type
defines which EPI call has to be done. The results of the EPI call are returned in
the object after the use of the flow method with the JavaGateway object.

The Callbackable class is a Java interface that is used when you require an
asynchronous call with callback. You need to write a class that implements the
Callbackable interface and pass an instance of this class to the setCallback
method of the request object. When flow is called it returns immediately and
when the data is actually returned by the CICS Gateway for Java, the
Callbackable object is run in a new thread.

5.2.2.3 Browser Session
The browser session to the CICS Gateway for Java is initiated with the first ECI
request from a CICS Gateway for Java for a LUW. During the browser session
with the CICS Gateway for Java, the Gateway maintains all state information in
the form of variables held in memory. The LUW token is transmitted between the
CICS client component and the CICS Gateway for Java as part of the explicit ECI
parameters.

A browser session with the CICS Gateway for Java is terminated and the
corresponding LUW is committed when the Gateway:

 • Responds to a client‘s commit request.

 • Responds to a client‘s rollback request.

 • Detects a timeout and sends a rollback request to the CICS program.

5.2.2.4 Security
The CICS facilities for user authorization and access control between the client
for Java and the CICS Gateway for Java can be used. Although using SSL
security on the Web server enables Java code to be downloaded securely, this
mechanism does not automatically provide security for any communication that
the applet code then independently performs. The IBM CICS Gateway for Java
Version 1 classes do not yet use encryption when transfering data from the applet
to the server. This will not be secure in an Internet environment! You may need to
think of other communication options if using CICS, or wait for security features to
be included with the CICS Gateway for Java.

A current design consideration in the use of Java applet communication on the
public Internet is the impact of firewalls. Firewalls is the term given to a
configuration of software which prevents unauthorized traffic between a trusted
network and an untrusted network. We discuss the technical aspects of firewalls
in Chapter 5.5.3.1, “Placing the Firewall” on page 104. Firewalls are put in place
to protect company assets from outside intrusion, but they can also limit
legitimate communications. Firewalls come into play in two ways: the general
accessibility of a server to outside users-(inbound restrictions), and the ability of
end users inside a firewall to perform certain network functions outside their
firewall-(outbound restrictions).
88 Accessing CICS Business Applications from the WWW

The CICS Gateway for Java configuration is well suited to avoid problems from
outside intrusion since the gateway processor can be placed outside the firewall
and be connected through the firewall to the CICS server. Outbound firewalls,
however, can be a problem. Large companies may use a firewall to limit the types
of connections or protocols that may be used and this can affect the operation of
the Gateway.

In summary, the use of Java on an Intranet works very well since firewalls are
typically not a factor. However, in designing Internet applications for end users
outside a company, consider whether those firewalls will be an inhibitor. If so,
alternative processing for those users, such as executing the Java code as a
Java application on the Web server (sometimes known as a servlet), could be
considered. As with other current limitations in using the Internet, firewall
technology can be expected to evolve rapidly over the next few years to address
this design consideration.

5.2.3 The CICS Internet Gateway
The CICS Internet Gateway allows you to use a Web browser to access
CICS/ESA 3270 applications.

The CICS Internet Gateway is a CGI script that takes HTML input from the Web
browser, maps it to the 3270 data stream, and uses the EPI to send it to a CICS
server from where it is routed to CICS/ESA. It then intercepts the 3270 data
stream returned by the CICS/ESA application, looking for variable data fields,
static text, and cursor position. This data stream is converted to an HTML
document and sent to the Web browser. The process not only enables any Web
browser to act as a 3270 terminal but can also add a more appealing GUI to 3270
applications.

Most existing CICS 3270 applications should be able to use the CICS Internet
Gateway without modification.

You can add value to your existing 3270 applications by providing header and
trailer information and help information in HTML format that can be merged with
the mapped 3270 data. Although HTML does not directly support 3270 features
such as PF keys, attention identifier keys, and cursor position, nor the GUI
concept of action bars, the CICS Internet Gateway has features to help you to
simulate these functions.

Even if you do not intend to allow Internet users access to your CICS/ESA
system, the CICS Internet Gateway can still be very useful as a means of
providing an improved user interface, using the Web browser as an alternative to
a more conventional 3270 emulator. No CICS-specific software is needed on the
Web browser system.

5.2.4 Other Ways to Access CICS/ESA
While the CICS family of products provides an integrated solution to accessing
CICS/ESA from a workstation environment, you can also access CICS/ESA using
a number of other mechanisms.

5.2.4.1 CICS/ESA and TCP/IP for MVS Sockets Interface
If you are familiar with TCP/IP sockets programming, you can issue socket calls
from your CGI script to communicate directly with a CICS/ESA application. If you
Accessing CICS/ESA from the Web 89

are using GoServe, you can use the RXSOCK package available through IBM
Employee Written Software to issue socket calls directly from your REXX filter.

See Chapter 10, “CICS Sockets Sample” on page 153 for an example of an
application that uses the TCP/IP for MVS sockets interface.

5.2.4.2 APPC Programming
You can issue APPC calls from your CGI script or GoServe filter to communicate
directly with a CICS/ESA distributed transaction processing (DTP) transaction.
This is a more secure environment than sockets, since you can use the security
features of APPC.

Once in CICS/ESA, your DTP application can, if required, issue FEPI calls to
connect to a 3270 application.

5.2.4.3 Remote Procedure Calls
If you are using a DCE environment, you can use DCE remote procedure calls
(RPCs) to route requests from your Web server to CICS/ESA. DCE uses the
CICS/ESA EXCI to perform a distributed program link to a CICS/ESA program.
DCE provides a more secure environment than native sockets, as discussed in
3.3.7, “Kerberos” on page 25.

IBM has also announced the Open Network Computing RPC (ONC RPC) feature
for CICS/ESA, which implements the RPC model developed by Sun
Microsystems. This feature allows ONC RPC clients to invoke CICS/ESA
applications directly. You could therefore code ONC RPC calls in your CGI script
to call your CICS/ESA server application. The ONC RPC interface is included in
most TCP/IP implementations. Figure 48 shows how you can connect a Web
server to CICS/ESA using the CICS/ESA ONC RPC feature.

Figure 48. Connecting through the CICS ONC RPC Feature

5.2.4.4 MQ Series
If you have MQ series installed on your Web server, you can use MQ to route
requests from your Web server to CICS/ESA by issuing MQ series calls from your
CGI script. Figure 49 shows how you can connect a Web server to CICS/ESA
using MQ Series.

TCP/IP HTTP TCP/IP

Web Browser

AIX

Web Server

MVS/ESA
CICS/ESAWeb Server

- ONC RPC Feature

CICS Application Server
90 Accessing CICS Business Applications from the WWW

Figure 49. Connecting through MQ Series

IBM has announced its intention to provide an MQ Series Web Interface that will
remove the need to code your own CGI script to issue MQ Series calls.

5.2.5 CICS Servers
You can use any of the following CICS server products to route your Web
requests to CICS/ESA:

 • CICS for OS/2

 • CICS for Windows NT Version 2

 • CICS/6000

 • CICS for HP/9000

 • CICS for DEC OSF/AXP

 • CICS/400

 • CICS/ESA

 • CICS/MVS

 • CICS/VSE

Note that CICS/ESA, CICS/MVS, and CICS/VSE do not support the CICS EPI; so
the CICS Internet Gateway or applications using the EPI must be routed to
CICS/ESA by way of an intermediary CICS server that does support the EPI.

5.3 Designing CICS/ESA Applications for the Web

When you write any CICS application, you must decide how that application
interacts with the user. In the past, the user sat at a 3270 terminal (or more
recently, a workstation emulating a 3270 terminal). Today, although use of
fixed-function terminals such as the 3270 is in relative decline, the number of
existing (sometimes called legacy) CICS applications that work with the 3270
interface remains very high. Consequently, interfacing with 3270 applications will
remain important for some time to come. The CICS EPI was designed with this in
mind, which is why the CICS Internet Gateway is a good first step in opening up
CICS/ESA to the Web.

With the advent of the workstation, and distributed computing (of which the Web
is just one aspect), new CICS/ESA application programs are being written not for
the 3270 human interface, but to interface with another program. The task of
managing the user interface, can, if desired, be delegated to a program running

TCP/IP HTTP

Web Browser

AIX

Web Server

MVS/ESA
CICS/ESAWeb Server
MQ Series

CICS Application Server

MQ Series

MQ
Network
Accessing CICS/ESA from the Web 91

on the workstation. It is for this style of application that the CICS ECI and other
implementations of the RPC model are designed. They allow CICS/ESA
programs to be invoked by means of a CICS distributed program link (DPL).

5.3.1 Accessing CICS/ESA 3270 Applications
The exercise of taking 3270 data streams and converting them to a different
format is sometimes called screen-scraping. It is not a particularly elegant
method of application programming; however, it is an essential tool to allow new
non-3270 applications to access existing CICS/ESA 3270 applications that
cannot easily be modified.

Fortunately, CICS provides a variety of tools to help you do this. There are
currently three ways in that you can invoke a CICS/ESA 3270 application directly
from a CGI script or GoServe filter:

 • The CICS Internet Gateway

 • The CICS Web Interface provided by CICS/ESA

 • The EPI provided by the CICS workstation-based servers and CICS Client

5.3.2 HTML Awareness
Before you develop a CICS/ESA Web application, you must decide whether or
not to make it "HTML-aware". You can:

 • Delegate all the HTML-handling responsibilities to the invoking CGI script or
GoServe filter, shielding your CICS/ESA application from the need to
understand HTML. For example, a CICS/ESA application program that simply
retrieves data from a CICS file or temporary storage queue, places it in the
CICS COMMAREA, and returns it to the Web server does not need any
knowledge of HTML or its syntax.

 • Perform all or part of the HTML processing in your CICS/ESA application. An
HTML-aware program dynamically builds an HTML document as it executes,
perhaps using input supplied by the invoking CGI script to build the HTML.

Existing CICS/ESA 3270 applications that you access through the CICS Internet
Gateway are examples of HTML-unaware applications, with all HTML being
handled by the CICS Internet Gateway itself.

The two styles of programming are equally valid, and each has advantages and
disadvantages:

Advantages of HTML-aware CICS/ESA Applications
 • All the code for the application is in one place, so it is easier to maintain.

 • Fewer interproduct or interplatform dependencies exist.

 • HTML is becoming a universal tool in the client/server world. Making your
CICS/ESA applications HTML-aware allows your CICS/ESA programmers to
acquire new skills that are relevant for both Web and internal applications, and
can be used on other platforms.

 • Your CICS/ESA application can be the server for multiple client platforms.

If you a writing a large number of CICS HTML-aware applications, you may prefer
to port the C utilities mentioned in 4.3, “Common Gateway Interface Scripts” on
92 Accessing CICS Business Applications from the WWW

page 39 to a generalized CICS/ESA application that can be linked to by
applications needing to parse incoming forms data.

Disadvantages of HTML-aware CICS/ESA Applications
 • Your CICS/ESA applications can be larger and more complex.

 • You must restrict your application to one medium, in the same way that 3270
programs are restricted today. While HTML is likely to be around for a long
time, this may be an unacceptable restriction.

 • Application designers and programmers must have detailed knowledge of
both the Web server and the CICS/ESA environment.

5.3.3 Using APPC or TCP/IP Sockets to Access CICS/ESA Applications
You can choose to use APPC or sockets calls to communicate between your Web
server and CICS/ESA. If so, it is up to your Web server and CICS/ESA
applications to manage communications between them. Figure 50 shows how
you can connect a Web server to CICS/ESA using the CICS to TCP/IP for MVS
Sockets Interface.

Figure 50. Connecting through TCP/IP for MVS Sockets Interface

A typical conversation might look like this:

1. The Web server establishes a connection with CICS/ESA.
2. The requested CICS/ESA application is started.
3. The Web server sends any input data to CICS/ESA.
4. The CICS/ESA application issues a RECEIVE for its input data.
5. The CICS/ESA application processes the request.
6. The CICS/ESA application issues a SEND to return any output to the Web

server.
7. The Web server script issues a recv to read data returned from CICS.
8. The CICS/ESA and the Web server script close the connection.

While this is a more complex model for your application, it does give its
components a greater level of control over the communication between them. For
applications that are exchanging large amounts of data, it may well be more
efficient to use this application programming model, because you can perform
multiple SENDs and RECEIVEs on the same connection until all data has been
exchanged.

1 2

3 4
5

67

9

8

Web Server

CGI Script

CICS/ESA

CICS Sockets Program

connect

send recv

close

takesocket

return

sendrecv

close
Accessing CICS/ESA from the Web 93

See Chapter 10, “CICS Sockets Sample” on page 153 for a sample program
illustrating how you can use TCP/IP sockets to communicate with CICS/ESA from
your Web server.

5.3.4 Using DPL to Access CICS/ESA Applications
A Web server can use DPL in a variety of ways to invoke CICS/ESA transactions
to process a request:

 • CICS ECI

 • CICS EXCI

 • DCE RPC

 • ONC RPC

Whatever the origin of the link to CICS/ESA, the mechanism used to pass data
between the CICS/ESA program and the invoking program is exactly the same:
on entry to the CICS/ESA program, it is passed to a communication area
(COMMAREA) containing input data, and the CICS/ESA program passes back
any output to the invoking program using the same COMMAREA.

In the case of the Web, the invoking program is the CGI script, and the data
passed might be data that a user has entered into an HTML form on the Web
browser.

The advantage of this approach is that, provided they use the same COMMAREA
structure, your CICS/ESA application can be the server for multiple Web servers
on a variety of platforms, using a variety of methods to link to CICS/ESA.

In our samples, we have concentrated on this application programming model.
For details on these methods of accessing CICS/ESA, see the following
references:

 • For DCE RPC, see MVS/ESA OpenEdition DCE Application Support:
Programming Guide.

 • For EXCI, see CICS/ESA External CICS Interface.

 • For details on the CICS ONC RPC Feature for MVS/ESA, contact your IBM
representative.

5.4 Writing CICS/ESA Programs for the Web

The techniques used for CICS/ESA pseudo-conversational programming are very
similar to those that are required for Web forms programming:

 • Both are initiated by a user (at a Web browser or 3270 terminal).

 • Both allow the program currently executing to specify which program is to run
next.

 • Both rely on being able to save information about the state of processing
across invocations.

In this section, we look at how to apply CICS pseudoconversational techniques to
Web transactions. Figure 51 on page 95 shows how you can use CICS facilities
such as the COMMAREA to keep track of state within a typical CICS 3270
application.
94 Accessing CICS Business Applications from the WWW

Figure 51. CICS Pseudo-conversational Processing

There are a range of issues familiar to CICS administrators and programmers
that are not addressed by traditional Web clients and servers, and that must
therefore be borne in mind when allowing Web access to CICS/ESA. The CICS
pseudoconversational model is a well-tried method of communication between
CICS and the user. Let us see how well we can apply this model to the Web
environment, assuming that our CICS/ESA application is HTML-aware.

5.4.1 Pseudoconversation Initiation
In a traditional CICS pseudoconversation, users sitting at their 3270 terminal or
workstation initiate a CICS/ESA transaction. The request is passed to CICS/ESA
in the form of a 3270 data stream, or by way of an ECI call.

The Web environment is much the same. The user enters a URL, or updates an
HTML form, and the CGI script that is invoked processes the request. In our case,
the CGI script invokes a CICS/ESA application to process the request.

5.4.2 Passing Input Data to the Server
If the user is entering data at a 3270 terminal, at a CICS terminal on a CICS
workstation, or via the EPI, then input data is passed to CICS/ESA in a 3270 data
stream. If the application program is using BMS, the 3270 data stream is decoded
by BMS before being passed to the application program.

If the CICS ECI is being used, any input parameters are passed to the CICS/ESA
application in its COMMAREA.

A Web program receives any HTML forms input through the standard input
stream, or in an environment variable, depending on the action specified on the

Appl-prog:
EXEC CICS ADDRESS COMMAREA(data)
Read user input
Check user input
Display output
EXEC CICS RETURN TRANSID(XXXX)

COMMAREA(data)

Appl-prog:
EXEC CICS ADDRESS COMMAREA(data)
Read user input
Check user input
Display output
EXEC CICS RETURN TRANSID(XXXX)

COMMAREA(data)

User think time...

CICS: Start - UOW

CICS: Start - UOW

CICS: End - UOW

CICS: End - UOW

UOW 1

UOW 2

COMMAREA
(state data)
Accessing CICS/ESA from the Web 95

form. The Web server reads this data that can either be decoded by the Web
server or sent to the CICS/ESA application unchanged.

5.4.3 Returning Responses from CICS/ESA
Once a CICS/ESA 3270 application is completed, it returns the results to the user
in the 3270 data stream.

If a CICS/ESA program has been invoked using the ECI, the results are returned
in the COMMAREA.

Any results to be returned to a Web user must be in HTML format when they
arrive at the Web browser. Depending on how your application is structured,
CICS/ESA can return HTML output to the Web server, or it can pass non-HTML
output to the Web server and rely on the Web server to do the HTML formatting.

5.4.4 Terminating the Pseudo-conversation
For 3270 applications, the application itself terminates the pseudo-conversation
by not priming CICS/ESA to continue it. How you do this depends on the design
of the application. Typically, the application simply omits the TRANSID parameter
when returning control to CICS.

In this respect, the Web transaction model is different. It is the user at the Web
browser who determines whether the pseudo-conversation is at an end, for
example by simply choosing not to invoke a particular server application again.

For ECI applications, the situation is effectively the same as for the Web. It is the
client that ultimately determines whether the pseudo-conversation is at an end.

5.4.5 Specifying the Next CICS/ESA Program to Execute
A CICS/ESA 3270 application can specify in various ways the next transaction to
be run for the pseudo-conversation. One is to make the first 4 bytes of the 3270
screen a hidden field containing the transaction identifier of the CICS transaction
to be run.

We can use the same technique in a Web transaction by using a hidden field in
an HTML form. In the case of a Web transaction, you may need to specify a
program name rather than a transaction identifier, depending on the method
being used to access CICS/ESA. The Web server can also elect to invoke a
CICS/ESA server application different from that specified in the form if it so
chooses.

For the ECI, the client specifies the next program to be run in the ECI parameter
list.

5.4.6 Detecting Interruption to the Pseudo-conversation
For a CICS/ESA 3270 session, the situation is straightforward. If the 3270
session is lost, CICS/ESA detects the failure and raises the TERMERR condition.
The 3270 application can handle the TERMERR condition, implementing any
application recovery that is required, and CICS/ESA itself can restart the session
using CICS/ESA recovery and restart facilities to check for lost data.
96 Accessing CICS Business Applications from the WWW

There is no equivalent function to this in the Web environment. There is no
mechanism to allow a Web server to send unsolicited data to the Web browser.
Recovery of the pseudoconversation can be initiated by the Web browser only by
retrying the operation.

5.4.7 Data Integrity
For 3270 sessions, CICS/ESA provides recovery facilities to allow you to ensure
that no data sent to or received from a 3270 terminal is lost. It is CICS/ESA that
decides when to commit changes to its resources.

CICS clients using the ECI can manage their own data integrity by using the
ECI_EXTENDED or ECI_NO_EXTEND parameters to control the scope of the
logical unit of work.

Because it uses the Internet, the Web cannot provide the same level of data
integrity between Web server and Web browser to which CICS administrators and
programmers are normally accustomed.

With a Web application, you have at least two connections to consider:

 • The link between your Web browser and your Web server
 • The links between your Web server and CICS/ESA.

5.4.7.1 Data Integrity between Web Browser and Web Server
If your Web browser and Web server are connected across the Internet, data
transmission between them is not guaranteed. If your Web browser issues a
request and receives a response indicating that the function was completed
successfully, you can be confident that the CICS/ESA transaction performed the
function that you requested. If your Web browser does not receive a response,
there is no way of knowing whether a CICS/ESA function that you requested has
completed normally:

 • It may not have run.

 • It may have started and been completed normally, but the connection to the
Web browser was lost before the results could be returned.

 • It may have ended abnormally (abended).

 • It may have been started and completed, but with the wrong result.

Although you will not normally be maintaining data resources on your Web
browser, you can still design the CICS/ESA and Web server components of your
application to ensure data integrity and consistency.

5.4.7.2 Data Integrity between the Web Server and CICS/ESA
The data integrity issues for the connection between the Web server and
CICS/ESA are no different from those that arise for any other distributed CICS
application.

If you are using the CICS family to manage communications between your Web
server and CICS/ESA, then you can use the facilities provided by CICS to
manage the logical units of work from your Web server. The CICS sample
application in Chapter 8, “A Simple CICS Access Program: CICSWEB” on page
135 illustrates the use of the ECI to manage a logical unit of work that can span
several calls to a CICS server program.
Accessing CICS/ESA from the Web 97

The level of data integrity depends on the communications protocol used to link
the Web server and CICS/ESA. If your Web server and CICS/ESA are linked by a
network using a communication protocol that allows you to manage your logical
units of work, such as System Network Architecture (SNA) you can use the synch
point facilities provided by APPC to ensure data integrity.

We recommend that, wherever possible, you manage your sensitive data from
CICS/ESA. If you do need to share resources between CICS/ESA and your Web
server, follow the established guidelines for CICS distributed processing.

5.4.8 Saving Information about the State of Processing
The Web was originally designed for "stateless" communication between client
and server. It was only with the advent of forms programming that the need arose
for an architected means of saving information about the state of processing
across invocations of a Web server.

Although it is possible to save information about the state of processing in hidden
fields in a form, this may not be ideal for the following reasons:

 • If the information about the state of processing contains sensitive data, users
may not want it to flow across the network, even in hidden fields.

 • Where there are large amounts of information about the state of processing, it
may be impractical to send it across the network each time the Web server
needs to interact with the client.

A newly proposed draft IETF standard would allow state data to be stored in
HTTP headers rather than in hidden fields in forms. Although this is a useful step
forward, it still does not address the issue of having to send the information about
the state of processing across the network. See the following URL for more
information:

ftp://ds.internic.net/internet-drafts/draft-kristol-http-state-info-00.txt

You may therefore want a mechanism that allows you to save information about
the state of processing that can be retrieved when new input is received for an
ongoing Web conversation.

You first have to decide where you want to manage your information about the
state of processing; this management can be done by your Web server CGI
script, by your GoServe filter, or by CICS/ESA.

One method of minimizing the amount of information about the state of
processing that has to flow across the network is to keep the information about
the state of processing in storage on the Web server, and allocate a unique
identifier to that information. You can then send the unique identifier in the form,
so that when the forms input is received, the Web server can use the unique
identifier to retrieve the information about the state of processing for that
conversation.

You may decide to do some or all of your state management on the Web server
(see Chapter 8, “A Simple CICS Access Program: CICSWEB” on page 135 for an
illustration of how to do this). One of the advantages of doing at least some of the
state handling on your Web server is that it can perform a routing function. If you
have multiple CICS/ESA servers, you can put code into your CGI script or
GoServe filter to analyze information about the state of processing returned by
98 Accessing CICS Business Applications from the WWW

the Web browser and invoke the appropriate CICS/ESA server for the requested
function. This allows your Web server to provide a routing function similar to that
provided by a CICS terminal-owning region (TOR) for conventional CICS
transactions. Figure 52 on page 99 shows how you can maintain information
about the state of processing data on your Web server when calling a CICS
application.

Figure 52. Web Server State Handling

The drawback of performing state management on your Web server is that the
operating system environment may not be as well suited to this function as the
CICS environment. State management is not a new problem for the traditional
OLTP environment. CICS provides a variety of facilities that can be used to
manage information about the state of processing for ongoing transactions, most
of which are designed to make it easier to write pseudoconversational
applications:

 • Using CICS temporary storage is a common method of storing information
about the state of processing. Naming conventions can be used to allocate
unique identifiers to each CICS temporary storage queue. One of the most
common techniques used to allocate unique identifiers is to incorporate the
CICS terminal identifier in the temporary storage queue name.

 • When a CICS terminal-oriented transaction ends, the next transaction to be
run at that terminal can be specified either by the CICS program on its EXEC
CICS RETURN statement, or in the CICS terminal definition for that terminal.

Appl-prog:
EXEC CICS ADDRESS COMMAREA(data)
Read user input
Check user input
Display output
EXEC CICS RETURN

Appl-prog:
EXEC CICS ADDRESS COMMAREA(data)
Read user input
Check user input
Display output
EXEC CICS RETURN

User think time...

CICS: Start - UOW

CICS: Start - UOW

CICS: End - UOW

CICS: End - UOW

UOW 1

UOW 2

Web Server storage
(state data)

Web
Server

CGI
Script

CGI
Script

Web
Server
Accessing CICS/ESA from the Web 99

Managing information for the Web environment differs from managing information
for the normal CICS environment in one important respect. In the traditional 3270
CICS environment, transactions are terminal-oriented. CICS associates
information about the state of processing with a particular terminal, and many of
the state management facilities that CICS provides are terminal-oriented. In the
case of Web transactions that have been initiated using CICS DPL, no terminal is
associated with the transaction, so these state management facilities cannot
always be used. We therefore have to look at alternative methods of managing
information about the state of processing for Web transactions (or for any other
DPL or ECI application that does not have an associated terminal) that need to
save information about the state of processing across transactions.

5.4.8.1 Allocating Unique Identifiers
The first problem you have when managing information about the state of
processing for Web pseudoconversations is to find some method of allocating a
unique identifier to a new pseudo-conversation. For 3270 terminals, CICS uses
the terminal identifier to manage its internal information about the state of
processing for the pseudo-conversation. Applications that use temporary storage
to save their own information about the state of processing often use the terminal
identifier to form part of the temporary storage queue name.

Because the Web pseudo-conversation has no terminal associated with it, you
need an alternative naming scheme.

One possible alternative might be to use the IP address of the Web browser that
originated the request to assign a unique identifier to the pseudo-conversation.
However this only works if you know that:

 • Only one pseudoconversation at a time will be running at a particular IP
address, which is unlikely in a workstation environment.

 • The request did not arrive via a SOCKS or proxy server, since requests from
them reflect the address of the SOCKS or proxy server rather than the
address of the originating browser itself.

It is therefore unlikely that a naming scheme using the IP address of the Web
browser can be used for a generalized CICS/ESA server.

One way to resolve this problem is to implement a counter to allocate unique
identifiers to pseudo-conversations. When a new pseudo-conversation is started,
the counter is incremented, and the new number is allocated to the new
pseudo-conversation. The counter must be held in generally accessible storage,
either a temporary storage queue, or shared storage that can be addressed by
any CICS/ESA program that needs it. Because this counter can be accessed
concurrently by multiple CICS/ESA transactions, you need some kind of locking
mechanism or compare and swap logic to prevent the same identifier from being
allocated to two pseudo-conversations.

Once you have allocated a unique identifier to a Web pseudo-conversation, that
identifier must be included in any form that is returned to the Web browser, so
that subsequent input from the Web browser identifies which
pseudo-conversation it should be associated with.
100 Accessing CICS Business Applications from the WWW

5.4.8.2 Timeouts
In the Web environment, users of Web browsers are often just surfing the Internet
looking for information. Your pseudoconversation, having initialized its state
storage, and returned a form to the Web browser, may never be invoked again,
because the user of the Web browser found something more relevant, or more
interesting to look at. Alternatively, the user may have completed the desired task
using the pseudo-conversation, but not bothered to end the pseudo-conversation
tidily. Having large numbers of idle Web pseudo-conversations on a busy
CICS/ESA could lead to storage problems because of large amounts of storage
being allocated to unused Web pseudo-conversations.

You therefore need some kind of timeout mechanism that allows you to purge
Web pseudo-conversations that have been inactive for a set time. To do this you
must do the following:

 • Include time stamp information in your information about the state of
processing.

 • Write a CICS program that frees resources allocated to a pseudo-conversation
that has been inactive for a set period of time.

 • When designing your application, include something in your form to prompt
the user to tell CICS/ESA when the pseudo-conversation is finished, so that
any CICS/ESA resources associated with the pseudo-conversation can be
released.

Your timeout program either can be run periodically to free resources from
expired pseudo-conversations, or can be invoked each time a new identifier is
allocated, or both.

5.4.8.3 Writing Your State Management Program
You can take two approaches when managing your Web pseudo-conversation
information about the state of processing:

 • Application-specific state management
 • Generalized state management

Both approaches perform the same function, and are equally valid. If you are
writing a relatively small number of Web transactions, you may prefer to
incorporate your state management code into the application itself. If you are
expecting to write a large number of Web applications, however, you may prefer
to write a generalized routine that can be invoked by any Web application (or
indeed any DPL application that has a need for information about the state of
processing).

Application-Specific State Management (Topping and Tailing)
This approach to state management is sometimes called topping and tailing
because it involves adding some extra code to the "top" (the start of the mainline
path through the program) and to the "tail" (the end of the mainline path through
the code); see Figure 53 on page 102.
Accessing CICS/ESA from the Web 101

Figure 53. Application-Specific State Management

Generalized State Management
This is the way we recommend that you handle your state management. See
Figure 54 on page 102. It allows you to encapsulate all the state management
code in one program, and if desired, to create standard transactions to monitor
and control all the state resources in your CICS/ESA system. Your Web
applications still need to be modified to call the state management program, but
you do not have large amounts of code in each application devoted to state
management. We provide a sample (see Chapter 9, “CICS State Management
Program: CICSSTAT” on page 145) to show you how the basic functions can be
coded.

Figure 54. Generalized State Management

If you wish to make state management an integral part of your CICS/ESA system,
you have the option of implementing it as a CICS/ESA task-related user exit
(TRUE). This would involve some recoding of the sample in Chapter 9, “CICS
State Management Program: CICSSTAT” on page 145, but would mean that you
could make the handling of information about the state of processing even
simpler, by creating a standard set of calls to be used by applications needing
information about the state of processing management.

Topping and Tailing
 Look at the input and look at the header
 If First Time (no conversation token)
 then allocate conversation token
 else restore state for conversation
 return input variables
 Remap commarea

 Save state for conversation x (for 10 minutes or timeout) or
 terminate (end of conversation)
 Here is my output for conversation x with template y
 This is my action tag for next program

Topping and Tailing
 Look at the input and look at the header
 If First Time (no conversation token)
 then call state manager to create pseudoconversation
 else call state manager to restore state for conversation
 return input variables
 Remap commarea

 If not last call then
 Call state manager to save state for conversation x
Else
 call state manager to terminate (end of conversation)
 Here is my output for conversation x with template y
 This is my action tag for next program
102 Accessing CICS Business Applications from the WWW

5.4.9 Data Conversion
In the 3270 data stream world, data conversion is not normally an issue since
both the 3270 and the application deal with data encoded using EBCDIC. In a
distributed computing environment, however, where you are using systems that
hold and display numeric and character data in different formats, you are likely to
be faced with the problem of data conversion. The Web is no exception. The
CICS family of solutions provide facilities to make data conversion transparent to
your CICS/ESA applications. The type of data conversion you need depends
upon your application design.

If you use CICS/ESA only to retrieve and return preformatted HTML documents to
a workstation Web server, you can avoid the need for data conversion altogether
by storing the documents on CICS/ESA in ASCII format.

If you are using one of the CICS family products to communicate with CICS/ESA
from the Web server, you can use the facilities provided by CICS/ESA to do your
data conversion. See CICS Communicating from CICS/ESA and CICS/VSE for
details. For illustrations of the use of these facilities, see 8.3, “CICSWEB
Function Description” on page 141.

If you are using one of the non-CICS family methods of accessing your
CICS/ESA applications, these usually also make the data conversion transparent
to your application. DCE RPC and ONC RPC both provide mechanisms to
convert data before it is passed to your CICS/ESA application. The CICS TCP/IP
Sockets Interface for MVS/ESA Version 2.11 also provides a conversion utility for
COBOL programs (see Chapter 10, “CICS Sockets Sample” on page 153).

5.5 CICS/ESA Systems Management Considerations

One of the advantages of enabling CICS to process Web requests is that you can
take advantage of CICS facilities to address a range of systems management
issues that may not be so easily handled on a normal Web server, such as:

 • Routing of Web requests.

 • Workload management.

 • Security.

 • Logging and auditing.

CICS/ESA provides various global user exit points you can use to perform these
functions.

5.5.1 Routing of Web Requests
Once your Web request arrives at CICS/ESA, you can use standard CICS
facilities to route the request within a CICSplex. The routing facilities available to
you depend on how you are accessing CICS/ESA from the Web server. If you are
using the CICS Internet Gateway, the EPI (through a CICS server that supports
the EPI), or the ECI, then you have access to the full range of CICS transaction
routing functions. See CICS/ESA Dynamic Transaction Routing in a CICSplex for
details of how to configure your CICS/ESA system for transaction routing.

If you are using some other method of performing a distributed program link to
your CICS/ESA applications, then you are more restricted in what you can do,
Accessing CICS/ESA from the Web 103

because you cannot necessarily control the transaction ID under which the
program runs. You can however use the XPCREQ and XPCREQC global user
exit points to perform a similar function.

If the CICS family is being used, XPCREQ is driven on both sides of the link, that
is, in both the client and the server regions. You use XPCREQ to modify the
SYSID at the time of the link request. One way to achieve this is by writing an
application program to manage a list of SYSIDs in a global work area (GWA). The
global user exit program accesses the GWA, and uses the information stored
there to redirect the DPL request. XPCREQC is invoked after the link request is
completed. You can use this exit to pass a response back to the application. For
more details on the XPCREQ and XPCREQC global user exit points, and how to
code them, see the CICS/ESA Customization Guide.

5.5.2 Workload Management
CICS/ESA Version 4.1 has workload management facilities that, when used in
conjunction with the routing function described in 5.5.1, “Routing of Web
Requests” on page 103, allow you to balance the workload in your CICSplex.
Regardless of which release of CICS/ESA you are running, you need to review
your workload management structure if you expect high volumes of Web
transactions as a result of allowing Web access to CICS/ESA. For details, see the
CICS/ESA Performance Guide.

5.5.3 CICS/ESA Security
Security has always been a principal concern in the traditional OLTP
environment, so CICS/ESA already has significant security function built into it.
The problem for CICS/ESA administrators who wish to give Web access to their
CICS/ESA systems is how to use this security function to police requests coming
in from the inherently less secure Internet environment. You need to consider a
number of security implementation issues:

 • Where do we put the firewall?

 • Which component authorizes the request?

 • How can we use CICS/ESA security functions?

 • Which secure Web server do we use?

We discuss these questions in the following subsections.

5.5.3.1 Placing the Firewall
The placement of your firewall is crucial to the security of your system.

While firewalls can monitor flows in both directions, from the trusted network to
the untrusted network and from the untrusted network to the trusted network, the
emphasis is principally on allowing Web browsers inside the trusted network to
access Web servers outside the firewall, while preventing users outside the
firewall from accessing your trusted network. Proxy and SOCKS servers are
designed to act on behalf of Web browsers, not on behalf of Web servers.

In this case, however, we need a security solution that allows Web browsers
outside the firewall to access resources inside the firewall. If we put the Web
server inside the firewall, there is no way of routing the Web browser request
through the firewall to the Web server. We therefore must put the Web server
104 Accessing CICS Business Applications from the WWW

outside the firewall. Only then can it be accessed by Web browsers. Figure 55 on
page 105 shows a configuration with the Web server outside the firewall.

Figure 55. Connecting through a Firewall

Placing the Web server outside the firewall raises the question of how to
communicate between the Web server outside the firewall, and the CICS system
on the trusted network inside the firewall. You need to configure your firewall so
that it will only allow flows into the trusted network between the Web server
machine and selected CICS servers.

If you are using a CICS family solution, then the answer is to use the CICS
Common Client to route requests from your Web server machine to a CICS
system inside the firewall. This is a compromise solution, because we
recommend that you have as little function as possible on your Web server. We
strongly recommend that you do not place CICS server code on your Web server.
Because using a firewall limits you to using TCP/IP to access CICS, the CICS
system you use must be one of the CICS servers that support TCP/IP. Your Web
browser request can then be routed to CICS/ESA from that server.

You can route requests directly from the Web server to CICS/ESA if you are using
one of the following mechanisms that allow you to use TCP/IP for MVS to access
CICS/ESA:

 • CICS ONC RPC.

 • DCE RPC.

 • CICS to TCP/IP for MVS Sockets Interface.

5.5.3.2 Authorization
We recommend that you use the authorization facilities provided by your Web
server to authorize incoming data. To use CICS/ESA security to add an extra
level of security, then when the request is passed to the target CICS system, the
Web server must already have mapped any authorization already granted to a
CICS user ID and password.

5.5.3.3 Using CICS/ESA Security Facilities
If you are using the CICS Internet Gateway to link to existing 3270 applications,
then you can sign on to CICS in the normal way.

TCP/IP

Secure network inside firewall

Web Server

Internet or unsecure

Firewall

CICS Client

external network
Accessing CICS/ESA from the Web 105

Similarly, for the EPI and ECI, CICS provides you with facilities to manage user
IDs and passwords. For illustrations of how CICS/ESA security can be used using
the ECI, see Chapter 7, “Connectivity Tester: ECITEST” on page 125).

If you are using SNA or DCE to communicate with CICS/ESA then you can use
the facilities they provide to manage your security.

If your configuration does not allow you to use the standard CICS/ESA, security
facilities, then CICS/ESA Version 4.1 supplies some extra security-related EXEC
CICS commands that you can issue from your CICS/ESA application:

 • EXEC CICS VERIFY PASSWORD allows you to verify a user ID and password
pair passed to your CICS/ESA application program by the Web server.

 • EXEC CICS QUERY SECURITY allows you to verify whether the CICS/ESA
application issuing the command has authority to access a CICS resource
managed by the CICS external security manager, for example the Resource
Access Control Facility (RACF).

For a detailed description of the above commands, see the CICS/ESA Application
Programming Reference. The CICS/ESA CICS-RACF Security Guide provides
detailed information on how to go about implementing CICS/ESA security.

5.5.3.4 Using Secure Web Servers
Products implementing security capabilities such as those described in Chapter
3, “Security” on page 15 are or soon will be available. For example, IBM recently
introduced SSL and S-HTTP support in its Internet Connection Secure Server for
AIX and OS/2 Warp, and Secure WebExplorer for OS/2 Warp. It will not be long
before there are secure Web server and secure Web browsers available for all
major platforms. As a long-term goal, we recommend that CICS system
administrators who are considering allowing WWW access to CICS consider
delegating some responsibility for authorization and encryption to this new
generation of secure Web servers. CICS security can still be used as a second
line of defense, once the Web server resolves the client request to a CICS user
ID and password.

5.5.4 Logging and Auditing
To track the Web activity in your CICS/ESA system, you can use the HTTP
header provided by the Web server as a useful source of information. Table 1
through Table 4 on page 38 shows the information available in HTTP headers.
For examples of how to bring this information into your CGI script or GoServe
filter, see Figure 10 on page 43 and Figure 11 on page 44. Once retrieved, this
information can be passed to CICS/ESA either for use by the application itself, or
for processing by a global user exit point such as XPCREQ.
106 Accessing CICS Business Applications from the WWW

Part 3. Sample Applications
© Copyright IBM Corp. 1998 107

108 Accessing CICS Business Applications from the WWW

Chapter 6. TestECI/TestEPI on CICS Gateway for Java

TestECI and TestEPI are Java programs to test the functionality of the CICS
Gateway for Java. The programs source code is provided by the CICS Gateway
for Java and can be found in the directory:

<install Dir>/JGate/java/ibm/cics/jgate/test.

TestECI and TestEPI are a good starting point to learn how to access CICS
applications through the CICS Gateway for Java.

6.1 CICS Gateway for Java Scenario

As we described in Chapter 5.2.2, “The CICS Gateway for Java” on page 84, the
gateway can run on a CICS server system or on CICS client system connecting to
a CICS server. For the TestECI program it is not relevant on which operating
system platform the CICS Gateway for Java is being installed. The program runs
unaltered against all platforms. Following we describe the gateway configuration
for OS/390 and AIX.

6.2 Configuring the CICS Gateway for Java on MVS

In this chapter we describe how to install and configure the CICS Gateway for
Java on MVS.

6.2.1 Installation
The product files are packaged as a single compressed tar file. The tar format
originates from Unix systems and was used to archive data onto magnetic tape. A
program called tar is used to create and extract tar format archives. The package
file is compressed to reduce its size and improve times for transfering from one
system to another. The programs compress and uncompress can be used to work
with compressed files. The installation is performed from an OpenEdition shell by
invoking the commands to uncompress and extract the package into the OS/390
hierarchical file system (HFS).

These installation steps assume you have the file jg-11mvs.tarZ on your
workstation. You will need a file system that allows for long file names, or rename
the file to conform to your system‘s conventions. An example would be
jg-11mvs.tgz for PC DOS systems that allow only eight characters for the name
and three characters for the extension.

6.2.1.1 Getting the Package File to the HFS
First the package file must be placed into the HFS in a suitable directory. There
are several ways you can do this depending upon the available setup at your site.

Using the file transfer protocol (FTP) program to an MVS dataset
From your workstation, use FTP to transfer the package file to the mainframe.
The sequence of commands is shown in Figure 56 on page 110. Here the MVS
dataset is created with the user‘s high-level qualifer prefixing it, but any dataset
you have authority to create will do.

Attention: You must specify a binary file transfer!
© Copyright IBM Corp. 1998 109

Figure 56. FTP to MVS

To place the package file into the HFS, you need to use the TSO command oput.
Before using oput, make sure the directory in the HFS where the package file will
go exists, in this case it is /u/slong. The binary option on the oput command is
essential and the case of the second parameter must be correct. Figure 57 on
page 110 shows the command on the TSO ready prompt.

Figure 57. oput Command in TSO

Using the Network File System (NFS)
The HFS directory where the package file is be placed can be mounted on the
workstation using NFS. This allows a single workstation copy command to place
the file in the HFS directory and is less error prone than using FTP. However, Your
site may not have NFS configured or your workstation may not have the correct
client software. If it is available, follow these steps to copy the package file to the
HFS:

1. Mount the HFS directory on your workstation in binary mode. The command
might look like:

mount -t nfs winmvs2c.hursley.ibm.com/hfs/u/slong,binary /mountpoint

2. Copy the file to the mounted directory:

cp /JavaGateway/jg-11mvs.tar.Z /mountpoint

Using FTP directly into the HFS
The FTP server on OS/390 can be configured to allow access directly to the HFS.
This allows files to be transmitted into the HFS without having to use an MVS

stevel:/JavaGateway# ftp winmvs2c.hursley.ibm.com
Connected to winmvs2c.hursley.ibm.com.
220-FTPSERVE IBM MVS V3R2 at WINMVS2C, 23:07:10 on 1997/08/19
220 Connection will close if idle for more than 5 minutes.
Name (winmvs2c.hursley.ibm.com:slong): slong
331 Send password please.
Password:
230 SLONG is logged on. Working directory is "SLONG.".
Remote system type is MVS.
ftp> bin
200 Representation type is Image
ftp> put jg-11mvs.tar.Z
200 Port request OK.
125 Storing data set SLONG.JG-11MVS.TAR.Z
250 Transfer completed successfully.
671417 bytes sent in 1.49 secs (4.4e+02 Kbytes/sec)
ftp> quit
221 Quit command received. Goodbye.

READY
oput ’slong.jg-11mvs.tar.z’ ’/u/slong/jg-11mvs.tar.Z’ binary
IGD103I SMS ALLOCATED TO DDNAME SYS00008
READY
110 Accessing CICS Business Applications from the WWW

dataset. Use the FTP program as before, but the oput command from TSO is not
required. Figure 58 on page 111 shows a transcript of an FTP session to the HFS.

Figure 58. FTP Directly into HFS

6.2.1.2 Uncompressing the Package File
The file jg-11mvs.tar.Z is compressed using the Unix compress command. To
uncompress it you use the uncompress command from an OpenEdition shell
prompt. The command is:

CICSRS8@SC52:/u/java/: >uncompress jg-11mvs.tar.Z
CICSRS8@SC52:/u/java/: >

The uncompressed file is named jg-11mvs.tar, and the file with the .Z suffix is
removed.

6.2.1.3 Extracting the Directories from the tar File
The remaining tar file must be expanded into a set of directories. (Figure 4 on
page 117 shows the directory tree that is created when the tar file is expanded.)
The command is:

CICSRS8@SC52:/u/java/: >tar -xopf jg-11mvs.tar
CICSRS8@SC52:/u/java/: >

The options on the tar command have the following effects:

 • -x Expands the archive.

 • -o Uses the owner and group information of the user when writing each file.

 • -p Restores the original permission bits on each file.

 • -f Precedes the name of the file to expand.

G:\JAVA>ftp wtsc52.itso.ibm.com
Connected to wtsc52.itso.ibm.com.
220-FTPD1 IBM MVS V3R2 at WTSC52.ITSO.IBM.COM, 22:48:32 on 1997-08-19.
220 Connection will close if idle for more than 5 minutes.
User (wtsc52.itso.ibm.com:(none)): cicsrs8
331 Send password please.
Password:
230 CICSRS8 is logged on. Working directory is "/".
ftp> cd /u/java
250 HFS directory /u/java is the current working directory
ftp> bin
200 Representation type is Image
ftp> put jg-11mvs.tar.Z
200 Port request OK.
125 Storing data set /u/java/jg-11mvs.tar.Z
250 Transfer completed successfully.
631543 bytes sent in 10.50 seconds (60.18 Kbytes/sec)
ftp> quit
221 Quit command received. Goodbye.
G:\JAVA>
TestECI/TestEPI on CICS Gateway for Java 111

6.2.2 Configuration of the CICS Gateway for Java
Before the CICS Gateway for Java can be run, the startup script must be edited
to reflect the CICS libraries on your system. The script is in the /JGate/bin/mvs
directory and is called JGate. You can use the TSO command oedit to edit the file,
or the OpenEdition editor vi from a shell. If the CICS Gateway for Java has been
expanded in the directory /u/java, the TSO command to edit the script would be:

oedit ’/u/java/JGate/bin/mvs/JGate’

At the bottom of the file, on lines 62 and 63, are the variables EXCI_OPTIONS
and EXCI_LOADLIB that need to be changed. The values are the names of the
data sets where CICS TS is installed on your system. You can set
EXCI_OPTIONS if you have a data set that contains the EXCI options table
DFHXCOPT. For example, if CICS TS has been installed into data sets that begin
CICSTS12.CICS and the table DFHXCOPT is in CICSTS12.PROG.LOAD then
the script should read:

EXCI_LOADLIB="CICSTS12.CICS.SDFHLOAD:CICSTS12.CICS.SDFHEXCI"
EXCI_OPTIONS="CICSTS12.PROG.LOAD"

The export statement in the script that follows these lines sets up the steplib of
the CICS Gateway for Java. The steplib needs to reference the SDFHEXCI library
for the EXCI modules, and the SDFHLOAD library for the module DFHTREX.
DFHTREX is not necessary for the CICS Gateway for Java to run but it allows it
to make trace entries that can be formatted with IPCS if a dump is taken.

When the changes have been made, save the JGate script file. This is all the
configuration that is required for the CICS Gateway for Java to run.

6.2.3 Installing the DFHJAVA Group
One program definition needs to be installed on CICS TS in order to support the
CICS Gateway for Java (MVS). This is DFHJVCVT and the definition is provided
in the group DFHJAVA. By default, DFHJAVA is not included in the startup list
DFHLIST, so you may like to add it to one of your own startup lists. You can also
manually install the program definition or use autoinstall.

6.2.4 Configuring CICS Connection and Sessions
In order for an OS/390 program to use the EXCI to communicate with CICS TS,
definitions for the connection and sessions need to be installed. The CICS
Gateway for Java (MVS) can use a specific or generic connection. Refer to the
EXCI users guide for a detailed description of how to define EXCI connections
and sessions.

The sample group DFH$EXCI contains sample definitions that can be used by
the CICS Gateway for Java (MVS). Installing this group creates a generic
connection that will be used by CICS Gateway for Java (MVS) by default. It also
creates a specific connection with the netname of BATCHCLI.

You can check that an EXCI connection exists with the CEMT transaction. After
installing the DFH$EXCI group, you can call the CEMT I CON command.

6.2.5 Setting Environment Variables
Environment variables are associations of names with values that can be set up
independent of programs that access them. Programs can read the values
112 Accessing CICS Business Applications from the WWW

associated with names and act upon them accordingly. The OpenEdition MVS
Users Guide contains detailed descriptions of environmt variables and how they
are set up. We describe three ways to set the variables that the CICS Gateway
for Java (MVS) uses. Section 6.2.6, “Environment Variables Used by the CICS
Gateway for Java (MVS)” on page 114 details the variables the CICS Gateway for
Java (MVS) accesses.

6.2.5.1 The export Command
The OpenEdition export command can be used to set variables before the CICS
Gateway for Java (MVS) is started up from a shell command line. For example
see Figure 59

Figure 59. OpenEdition Export Command

6.2.5.2 Using Export in the JGate Script
To save having to type in the export commands each time you start the CICS
Gateway for Java (MVS), you can place the statements in the JGate script file
before the Java virtual machine is started. Figure 60 an example of the last few
lines in the script file when some export commands are included.

Figure 60. export in a JGate Script

6.2.5.3 Using the STDENV DD Name in the Startup JCL
In the JCL that runs the BPXBATCH program, you can code a DD card with the
name STDENV. This can refer to inline data or a file that contains the name value
pairs for the environment variables for the program that BPXBATCH starts. Here
is how the same variables are coded in the JCL:

//STDENV DD *

/u/java/JGate/bin/mvs: >export DFHJVPIPE=JVGATE1
/u/java/JGate/bin/mvs: >export DFHJVSYSTEM_00="SCSCPAA9-ITSO System TS 1.2"
/u/java/JGate/bin/mvs: >export DFHJVSYSTEM_01="BRANCH-Main branch server"
/u/java/JGate/bin/mvs: >JGate
CICS Gateway for Java, Version 1.1.3, 29H0948.
(C) Copyright IBM Corporation 1996. All rights reserved.
CCL6501I: Starting the CICS Gateway for Java with user specified values.
CCL6502I: [Port = 2006 , Initial Connections = 1 , Maximum Connections = 100
,
CCL6502I: Initial Workers = 1 , Maximum Workers = 100]
CCL6505I: Successfully created the initial Connection and Worker threads.

export STEPLIB=${STEPLIB}:${EXCI_OPTIONS}:${EXCI_LOADLIB}

export DFHJVPIPE=JVGATE1
export DFHJVSYSTEM_00="SCSCPAA9-ITSO System TS 1.2"
export DFHJVSYSTEM_01="BRANCH-Main branch server"

#
Start JGate
#
java ibm.cics.jgate.server.JGate $*
TestECI/TestEPI on CICS Gateway for Java 113

DFHJVSYSTEM_00=SCSCPAA9-ITSO System TS 1.2
DFHJVSYSTEM_01=BRANCH-Main branch server
/*

6.2.5.4 Quotes in Environment Variable Values
When variables are defined with the export command, either on the command
line or in the shell script, the value may need to be surrounded by quotes. If the
value contains spaces or special characters then quotes are needed. In the
example in Section 6.2.5.2, the DFHJVSYSTEM_nn variables need quotes
because of the spaces, but DFHJVPIPE does not need quotes. In Section
6.2.5.3, quotes are not needed because the variables are set in JCL, not the
script file.

6.2.5.5 Overriding Variables
The variables that take effect when the CICS Gateway for Java (MVS) is started
are the final ones to be set. So if JCL is used to start the JGate script, any
variables that are set in the script will override the variables of the same name in
the JCL.

6.2.6 Environment Variables Used by the CICS Gateway for Java (MVS)
The CICS Gateway for Java (MVS) reads environment variables in order to obtain
its customization options. The two options controlled by the variables are whether
to use a specific or a generic EXCI connection, and what values to return for an
ECIRequest.listSystems call. There are two variables that affect the operation of
the CICS Gateway for Java (MVS).

6.2.6.1 DFHJVPIPE
In order for the CICS Gateway for Java (MVS) to use a specific EXCI connection,
this variable must be set to the netname specified in the connection definition. If
you are using the EXCI sample definitions in the group DFH$EXCI then a specific
connection is installed called EXCS. In order that the CICS Gateway for Java
(MVS) can use this connection, you must set the value of DFHJVPIPE to be
BATCHCLI before starting up the gateway. If DFHJVPIPE is not set to any value,
or is left unset, then the CICS Gateway for Java (MVS) will use the generic
connection defined to CICS.

6.2.6.2 DFHJVSYSTEM_nn
You may set up to 100 variables of this form, with nn ranging from 00 to 99. The
values are the names and descriptions of CICS systems to be returned in
response to an ECIRequest.listSystems call. The value must be in the form of a
string containing the name of a system followed by a hyphen, and then its
description. For example,

/u/java: >export DFHJVSYSTEM_00="SCSCPAA9-ITSO System TS 1.2"
/u/java: >export DFHJVSYSTEM_01="BRANCH-Main branch server"
114 Accessing CICS Business Applications from the WWW

If you start up the CICS Gateway for Java (MVS) after issuing these commands
and use the TestECI program, the output is as shown in Figure 61 on page 115.

Figure 61. TestECI output on MVS

6.2.7 Running the CICS Gateway for Java (MVS)
The CICS Gateway for Java (MVS) can be started from an OpenEdition shell
prompt or by submitting JCL that runs the BPXBATCH program. BPXBATCH is an
OS/390-supplied program that executes OpenEdition programs and shell scripts
that reside in the HFS. Figure 62 on page 115 shows some JCL that can be used
to run the JGate script file. It is assumed that the CICS Gateway for Java (MVS)
was installed in the /u/java/JGate directory.

Figure 62. JCL to run JGate Script on MVS

Since BPXBATCH does not support MVS files for its standard output and
standard error, you need to specify HFS files. In Figure 62 on page 115 these are
/u/java/JGate/jgateo.log and /u/java/JGate/jgatee.log. In order to view these it
is necessary to use the TSO OEDIT command or enter an OpenEdition command
shell and use the OpenEdition file manipulation commands.

6.2.7.1 Using nohup for Background Execution
When the CICS Gateway for Java (MVS) is started from an OpenEdition
command line such as OMVS, the user cannot log out of OpenEdition without

TestECI - simple test of CICS Gateway for Java functionality
=== Test Parameters ===
CICS Gateway : wtsc52.itso.ibm.com:3006
ECI Server : null
ECI UserId : null
ECI Password : null
No of programs given : 0
=== Connect to Gateway ===
Successfully created JavaGateway
=== Available Servers ===
System : SCSCPAA9, Description : ITSO System TS 1.2
System : BRANCH, Description : Main branch server
Successfully closed JavaGateway

//JGATE JOB (999,POK),’JGATE’,CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID
//BPXJGATE EXEC PGM=BPXBATCH,
// PARM=’SH /u/java/JGate/bin/mvs/JGate
// -noinput’,
// REGION=28M
//STDIN DD PATH=’/dev/null’,
// PATHOPTS=(ORDONLY)
//STDOUT DD PATH=’/u/java/JGate/jgateo.log’,PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU
//STDERR DD PATH=’/u/java/JGate/jgatee.log’,PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=SIRWXU
//STDENV DD *
DFHJVSYSTEM_00=SCSCPAA9-ITSO System TS 1.2
DFHJVSYSTEM_01=BRANCH-Main branch server
TestECI/TestEPI on CICS Gateway for Java 115

stopping the gateway. To start the CICS Gateway for Java (MVS) as a
background program that does not stop when the user logs out, use the
command shown in Figure 63.

Figure 63. Starting JGate as "no login" User

This causes all the output to go to the file nohup.out, which can be viewed at any
time. To stop the CICS Gateway for Java (MVS) at a later date, it is necessary to
use the kill command. At a later date, to find the number of the job to kill, use
the jobs command first. The commands Figure 64 stop the CICS Gateway for
Java (MVS) when it has been started using the nohup command. Finally the cat
command displays the log file.

Figure 64. Stopping JGate with the kill Command

6.3 Configuring the CICS Gateway for Java on AIX

In this section we describe how to install and configure the CICS Gateway for
Java on AIX. The code may be downloaded for free on:

http://www.hursley.ibm.com/cics/internet/cicsgw4j/jgdown.html

6.3.1 Installation
Make sure that you login as user root and that you have enough disk space left in
the file system you like to install the CICS Gateway for Java. Now follow these
steps:

1. The downloaded file is a UNIX compressed tar file and has to be moved to the
directory where you will create the root directory for this installation. For
example,

/u/java/JGate/bin/mvs: >nohup JGate -noinput &
[1] 67108868
/u/java/JGate/bin/mvs: >nohup: sending output to "nohup.out"
/u/java/JGate/bin/mvs: >

/u/java/JGate/bin/mvs: >jobs
[1] + Running nohup JGate -noinput &
/u/java/JGate/bin/mvs: >kill %1
[1] + Done(143) nohup JGate -noinput &
/u/java/JGate/bin/mvs: >cat nohup.out
CICS Gateway for Java, Version 1.1.3, 29H0948.
(C) Copyright IBM Corporation 1996. All rights reserved.
CCL6501I: Starting the CICS Gateway for Java with user specified values.
CCL6502I: [Port = 2006, Initial Connections = 1 , Maximum Connections = 100
,
CCL6502I: Initial Workers = 1 , Maximum Workers = 100]
CCL6505I: Successfully created the initial Connection and Worker threads.
CEE5205S The signal SIGTERM was received.
[1] + Done(143) ?
 83886115 FSUM7750 Terminated java
/u/java/JGate/bin/mvs: >
116 Accessing CICS Business Applications from the WWW

mv /tmp/jg-11aix.tar.Z /usr/lpp
cd /usr/lpp

2. Now uncompress the file jg-11aix.tar.Z

uncompress jg-11aix.tar.Z

3. Expand the uncompressed file jg-11aix.tar

tar -xvf jg-11aix.tar

4. This should create the root directory JGate, and the directory structure
underneat as shown in Figure 65.

Figure 65. CICS Gateway for Java Directory Structure on AIX

6.3.2 Configuration
Define to your Web server the location of the root directory into which you have
installed the CICS Gateway for Java code on AIX. Your particular Web server
documentation will explain how to do this. In our case, we used the IBM Internet
Connection Secure Server Version 4.2 for AIX, and we simply made a symbol link
from the JGate root directory to the Web servers pub directory:

cd /usr/lpp/internet/server_root/pub
ln -s /usr/lpp/JGate JGate

This is necessary in order to be able to point from a Web page to the JGate
classes.

However, this is a quick way to get access to JGate through the Web server. In
order to gain any security, you must customize the httpd configuration file and
add the JGate directory structure as an accessible path according to the manual.
There is also a very good redbook available on customizing the IBM Internet
Connection Secure Server, SG24-4805-00.

Add the JGate classes to the CLASSPATH variable of your environment. In our
example,

export CLASSPATH=$CLASSPATH:/usr/lpp/JGate/classes
TestECI/TestEPI on CICS Gateway for Java 117

We recommend adding this statement permanently into the /etc/environment file.

6.3.3 Starting the CICS Gateway for Java on AIX
You must start the CICS Gateway for Java at the AIX operating system command
prompt of the computer on which you have installed it. You can use the default
start options or you can set up user-defined options during startup. To work with
the default startup options, you first must set your working directory to the place
where the JGate program is. In our example,

cd /usr/lpp/JGate/bin/aix

Then press JGate at the command prompt and press Enter. You will see the
following output shown in Figure 66.

Figure 66. Output from JGate on AIX

To override the defaults, simply type JGate at the command prompt and add some
or all of the following options:

 • -port=<port_number>
TCP/IP port number to listen on

 • -initconnect=<number>
Initial number of Connection Manager threads

 • -maxconnect=<number>
Maximum number of Connection Manager threads

 • -initworker=<number>
Initial number of Worker threads

 • -maxworker=<number>
Maximum number of Worker threads

 • -trace
To enable extra tracing messages

 • -time
To enable timing information in messages

 • -noinput
To disable the reading of input from the console

We worked with the CICS Gateway for Java V1.1.2, which had the restriction that
no concurrent ECI and EPI requests were supported. In order to support
concurrent ECI and EPI requests, we had to start two different JGate programs,
assigned to different TCP-IP ports, with the -port=<port_number> option. This
problem was described in the JGate readme file and may be solved in the future.

CCL6500I: Starting the CICS Gateway for Java with default values.
This will be followed by two lines showing the values which are being used:
CCL6502I: [Port = 2006 , Initial Connections = 1 , Maximum Connections = 100
,
CCL6502I: Initial Workers = 1 , Maximum Workers = 100]
118 Accessing CICS Business Applications from the WWW

6.3.4 Stopping the CICS Gateway for Java
If you have startet the JGate with the -noinput flag set, you must use the UNIX
kill command to stop the gateway on AIX. To do so, you must first evaluate the
process number of JGate with:

ps -ef | grep -v grep | grep JGate

Afterward use the kill command against the process number:

kill <JGate process number>

If you did not use the -noinput flag to start JGate, simply enter Q at the command
line and press Enter to stop it.

6.4 TestECI

TestECI is a sample program to test the functionality of the CICS Gateway for
Java. With ECITest, you can connect to a CICS Gateway for Java and send an
ECI request to a CICS server. On this CICS server, you can start one or even
more CICS programs which all run in the same UOW. ECITest cannot pass a
COMMAREA to the called programs.

In our installation, we placed the source of ECITest in
/usr/lpp/JGate/java/ibm/cics/jgate/test as illustrated in Figure 4 on page 117.

6.4.1 Running TestECI
TestECI can be used as either Java a application or as an applet. If you use it as
a Java application, you must start it with the code shown in Figure 67.

Figure 67. TestECI Structure

Where:

 • jgate_server is the address of the Gateway to connect to.

 • jgate_port is the Gateway port on jgate_server (defaults to 2006).

 • cics_server is the name of the CICS server to receive ECI requests.

 • cics_username and cics_password are the userID and password.

 • prog_name is the name of a CICS server program. You can specify up to ten
program names.

 • status will cause the program to query the status of all the known CICS
servers.

 • trace will cause tracing information to be produced.

java ibm.cics.jgate.test.TestECI [jgate=jgate_server]
 [jgateport=jgate_port]
 [server=cics_server]
 [userid=cics_userid]
 [password=cics_password]
 [prog<0..9>=prog_name]
 [status]
 [trace]
TestECI/TestEPI on CICS Gateway for Java 119

If you use TestECI as an applet, you must incorporate an applet tag into the
HTML page where you place the ECITest output. Figure 68 on page 120 shows
an example of such an implementation:

Figure 68. Applet tag for TestECI

If this HTML page is viewed with a Java-enabled browser, the TestECI applet
runs the following procedure:

1. The Java program creates an instance of a ibm.cics.jgate.client.JavaGateway
object.

2. The Java program creates an instance of a ibm.cics.jgate.client.ECIRequest
object containing the request that it wishes to make.

.

.

.
<h1>IBM CICS Gateway for Java - TestECI sample </h1>
<p>TestECI is a sample program which allows you to test the
functionality of the CICS Gateway for Java.
With TestECI you can connect to a Gateway and then
send one or more ECI requests to a CICS server.
<p>
Further information on TestECI is available as part of the
CICS Gateway for Java
documentation

<table><tr><td>

<hr>
<applet
codebase="/usr/lpp/JGate/classes"
code="ibm.cics.jgate.test.TestECI.class" width=520 height=290>
 <param name=jgate value=sinop>
 <param name=jgateport value=2006>
 <param name=server value=cicssj01>
 <param name=userid value=guest>
 <param name=password value=guest>
 <param name=prog0 value=DFHCSSF0>
 <param name=status value=yes>
 <param name=trace value=yes>
<blockquote>
<hr>

Sorry, you are viewing this page with a browser
that doesn’t understand the APPLET tag.

You need to upgrade to a Java-enabled browser.

You can download the latest Netscape browser from
 http://home.netscape.com

.
.
.
.

120 Accessing CICS Business Applications from the WWW

3. The Java program then flows the request to the CICS Gateway for Java using
the flow method of the JavaGateway object.

4. The Java program checks the return code of the flow operation to see whether
the request was successful.

5. The Java program then closes the JavaGateway object.

Figure 69 on page 121 shows the output of a successful finished TestECI
transaction. All included programs (prog0...9) run in the same UOW.

Figure 69. Output of the File TestECI.html

6.5 TestEPI

TestEPI is a sample applet that also allows you to test the functionality of the
CICS Gateway for Java. With TestEPI you can connect to a Gateway and then
send one or more EPI requests to a CICS server.

TestEPI uses two other classes: RequestDetails and EPIStrings which are also
provided with the sample code.
TestECI/TestEPI on CICS Gateway for Java 121

6.5.1 Running TestEPI
TestEPI has a scrolling list that contains two EPI requests:

 • List CICS servers

 • Run transaction CECI

The TestEPI applet tag in Figure 70 on page 122 has been also placed into an
HTML page similar to the TestECI sample, however; all needed parameters are
being asked by the applet itself and not through the applet parameter list.

Figure 70. Applet Tag for TestEPI

.

.

.
<h1>IBM CICS Gateway for Java - TestEPI sample </h1>
<p>
TestEPI is a sample applet which allows you to test the functionality of
the CICS Gateway for Java. With TestEPI you can connect to a Gateway and then
send one or more EPI requests to a CICS server.
<p>
Further information on TestEPI is available as part of the
CICS Gateway for Java
documentation

<table><tr><td>

<hr>
<applet
codebase="/usr/lpp/JGate/classes"
code="ibm.cics.jgate.test.TestEPI.class" width=650 height=500>
<blockquote>
<hr>

Sorry, you are viewing this page with a browser
that doesn’t understand the APPLET tag.

You need to upgrade to a Java-enabled browser.

You can download the latest Netscape browser from
 http://home.netscape.com

.
.
.
.

122 Accessing CICS Business Applications from the WWW

Figure on page 123 shows the output of a successfull finished TestEPI
transaction.

Figure 71. Output of the File TestEPI.html
TestECI/TestEPI on CICS Gateway for Java 123

124 Accessing CICS Business Applications from the WWW

Chapter 7. Connectivity Tester: ECITEST

In this chapter we describe ECITEST, a simple application that illustrates a
number of basic building blocks you need to access a CICS application from the
Web. Use ECITEST to call a CICS program from a Web server using the CICS
ECI.

Source code for ECITEST components is included in Appendix A, “ECITEST
Source Listings” on page 157.

7.1 What Does ECITEST Do?

ECITEST performs two basic functions: First, it prompts you to enter a CICS user
ID and password, as shown in Figure 72.

Figure 72. ECITEST Sample Application: Login Page

ECITEST then presents you with a page that contains a form with two input fields,
as shown in Figure 73 on page 126.
© Copyright IBM Corp. 1998 125

Figure 73. ECITEST Sample Application: Data Entry Initial Display

Enter the name of a CICS program in the first field, and the contents of the CICS
COMMAREA in the second field. When you press Enter, or click on the Test ECI
button on the form, ECITEST calls the program you specified.

After calling your CICS program, ECITEST redisplays the form, including any
data that it returns in the CICS COMMAREA, as shown in Figure 74 on page 127.
126 Accessing CICS Business Applications from the WWW

Figure 74. ECITEST Sample Application: Data Entry Program Response

You can then repeat this process to call the program with a different
COMMAREA, or call a different program altogether. ECITEST also displays a
message just below the page title telling you the result of the call. If an error
condition such as a CICS application abend is detected, the message includes
information about the error.

7.2 ECITEST Components and Interfaces

ECITEST consists of two main components:

 • A Web server extension, or gateway, that provides the link between the Web
environment and CICS

 • A CICS program that performs the requested application function.

ECITEST also requires that you have a Web browser to provide the user interface
to the functions that ECITEST provides.

These ECITEST application components use the following interfaces:
Connectivity Tester: ECITEST 127

 • The Web browser communicates with the Web server using the HTML data
stream and HTTP protocols.

 • The Web server communicates with the ECITEST Web server extension using
the mechanisms defined by the Web server. We provide examples of two
interfaces in this book: the Common Gateway Interface (CGI) used by the IBM
Internet Connection Server and several other Web servers, and the filter
interface provided by GoServe. In both cases, ECITEST uses a Web server
extension written using REXX.

 • The Web server extension communicates with CICS using the CICS ECI.

 • The CICS ECI communicates with the destination CICS system on which the
CICS program runs. This covers a number of possible CICS connectivity
scenarios, ranging from an ECI call to a CICS program on CICS OS/2 or
CICS/6000 running on the same workstation as the Web server, to an ECI call
that is routed across a multiprotocol network through one or more intermediate
CICS systems to a CICS/ESA system. Section 5.1, “Connecting CICS to the
Internet” on page 78 includes information about CICS connectivity options you
can use.

ECITEST processing is distributed over three platforms: A workstation with a
Web browser, a server running a Web server, and a CICS host. While nothing
prevents two or even all three components from running on the same physical
machine, this is not a typical setup except, perhaps, while you are developing and
testing your applications. Figure 75 shows the relationship of these three
platforms.

Figure 75. ECITEST Components and Interfaces

Clearly the Web server platform is the key to linking the Web and CICS worlds.
Figure 76 shows the connection between Web and CICS functions running on the
Web server.
128 Accessing CICS Business Applications from the WWW

Figure 76. Web to CICS: Web Server Components

7.3 ECITEST Function Description

Functions that ECITEST must perform include:

 • Invoking an application-specific Web server extension or gateway

 • Obtaining user input from the Web browser

 • Maintaining information about the state of processing

 • Passing data to and from CICS

 • Generating dynamic HTML documents

 • Deleting information about the state of processing on the Web server.

We look at how ECITEST performs each of these functions as an example of how
you can perform these functions in your own applications.

7.3.1 Invoking an Application-Specific Web Server Extension or Gateway
The mechanism you use to tell the Web server to start your application depends
on the server. The most common method is that defined by the Common
Gateway Interface (CGI) specification, which is implemented by a number of
servers including the Domino Go Webserver.

We also look at how you invoke an application using the GoServe Web server for
OS/2.

7.3.1.1 Invoking the Web Server CGI Script
When using the CGI, specify the application extension or script to be executed in
the URL. For example, a URL of http://servername/cgi-bin/myprog/ requests that
the server invoke program myprog. The string cgi-bin after the server name in the
URL is the key you use to trigger execution of your script. You can customize
most servers to use other strings to trigger scripts as well.

Note that myprog can be any executable program supported by the operating
system under which the server is running. For example, on OS/2 Warp, you could
write your script using C or C++, or use OS/2 command files using REXX. We
chose to use REXX because its powerful string handling facilities are ideally
suited to writing Web server scripts.
Connectivity Tester: ECITEST 129

Any data in the URL appearing after the script name is not used by the server, but
is made available to the CGI script so you can use it to control the operation of
your application if you wish.

There are several ways in which the Web browser can generate the URL that
triggers your script:

 • The user can type the URL manually using the Web browser's command line.

 • You can specify the URL as a hypertext link in an HTML document that the
user displays, for example,

cicsweb.html

If your CGI script sent the document, you could also specify a relative URL, for
example,

cicsweb.html

 • When you define a form in an HTML document, you can define the URL to be
processed when the user activates the form, for example,

<form action="/cgi-bin/cicsweb" method="POST">

ECITEST uses this method to identify the script to process input from its
forms.

7.3.1.2 Invoking GoServe Application Filter
GoServe uses the term filter for application scripts used to customize the way it
works. You must write GoServe filters using REXX, though you can call programs
written in other languages from your REXX filter if you wish.

When you are using servers that use the CGI interface, you tell the server to
invoke an application script by specifying /cgi-bin/ after the server name in the
URL. GoServe, in contrast, calls a filter for every incoming Web browser request.
GoServe's default filter is a REXX program named gofilter.80; This filter
provides basic Web Server functions for retrieving documents and other objects
in response to Web browser requests. You can modify this filter to perform any
additional function you require.

You could add your entire application to gofilter.80. However it is probably a
better idea to write your application as a separate filter, and make minimal
modifications to gofilter.80 so that it calls your filter. This is the approach that
we took with ECITEST. You need to decide what is to trigger your application. For
ECITEST, we decided to use an identifying string of $ecitest directly after the
server name in the URL. That is, a URL starting with

http://baykal.sanjose.ibm.com/$ecitest/

triggers the ECITEST filter. To do this, we added the code shown in Figure 77 on
page 130 to the default GoServe filter.

Figure 77. Triggering ECITEST

/***/
/* Modifications for CICS Web Interface. */
/***/
if translate(left(sel,8)) =’$ECITEST’ then
 return ecitest(verb) /* call the ECI Tester */
130 Accessing CICS Business Applications from the WWW

7.3.2 Obtaining User Input from the Web Browser
After the Web server invokes your CGI script or GoServe filter, it needs to retrieve
the information the user has entered into the form. The way you do this depends
on the METHOD parameter you define on the HTML <FORM> tag. You have two
options for METHOD: GET or POST. If you use GET, for example,

<FORM ACTION="/cgi-bin/ecitest" METHOD="GET">

then input data is appended to the URL string. This method is mainly provided for
backward compatibility with earlier levels of HTML that did not support forms, and
is limited in the amount of data that you can send. We highly recommended that
you use the POST method instead, for example,

<FORM ACTION="/cgi-bin/ecitest" METHOD="POST">

which sends the user’s form input separately as part of the body of the input
request.

Input data is returned as a string of variable names and values, with each name
or value pair separated by an &, and an = between the variable name and the
value. Blanks are sent as the + character, and some characters (including & = +
and %) are encoded as their hex value, preceded by a % character. An example
of an input string from the ECITEST login form is:

eci_userid=d%25flt&eci_password=&cicsweb_function=login&submit=Test+ECI

You read the form data from a CGI script like this:

if verb = ’POST’ then do /* Only support POSTs for forms */
 /* get the incoming data */
 eciparms = charin(,,value(’CONTENT_LENGTH’,,’OS2ENVIRONMENT’))

or from a GoServe filter as shown here:

if verb = ’POST’ then do /* Only support POSTs for forms */
 ’read body var eciparms’ /* get the incoming data */

You can then parse the string and assign the values to REXX variables. In
ECITEST, we use a REXX stem variable to hold the input variables. For example,
variable eci_userid is assigned to REXX variable VAR.eci_userid and so on. The
following REXX procedure shown in Figure 78 on page 132 does this for us.
Connectivity Tester: ECITEST 131

Figure 78. Extract Variables from Forms Using REXX

7.3.3 Maintaining Information about the State of Processing
When conducting a dialog with a Web browser user, all but the simplest of
applications need to keep track of the state of the dialog so they know what
function to perform. ECITEST is no exception–it needs to save the user's CICS
user ID and password, make sure that an incoming request is from a user who
has signed on, and know what function it is being asked to process.

When you develop an application that uses the Web to access CICS applications,
you can keep state information in one or more of the Web browser, the Web
server, and CICS itself. In ECITEST we use both the Web browser and the Web
server (or more accurately the Web server CGI script or GoServe filter) to keep
state information. ECITEST keeps the following items of information about the
state of processing:

Session HandleWhen a user signs on, ECITEST generates a unique number to
identify the session. Its value is kept with the Web browser in a
hidden field in the form, for example:

<input type="hidden" NAME="handle" VALUE="123’">

ECITEST also uses the session handle to generate the name
of a file used to store information about the state of processing
on the Web server.

CICS User IDECITEST keeps the CICS user ID both in the Web browser as a
hidden field named eci_userid and in the state file on the Web
server. When a request is received, ECITEST checks whether
the two match. If they do not match, the state file is deleted
from the Web server and the user is requested to reenter the
user ID and password.

CICS PasswordECITEST keeps the user's password in the state file on the Web
server. ECITEST passes the user ID and password to CICS for
validation on each call to the ECI.

/**/
/* PARSEVAR: Extract variables from form (taken from MFC’s GoRemote) */
/* e.g. variable eci_userid placed in var.eci_userid */
/**/
parsevar: procedure expose var.
 /* set VAR.x variables from the incoming data stream */
 parse arg data
 VAR.=’’ /* null string unless set */
 data=data’&’ /* set end condition */
 do until data=’’ /* each value */
 parse var data assign ’&’ data /* split off name=value */
 parse var assign name ’=’ value /* separate */
 value=translate(value, ’ ’, ’2b090a0d’x) /* handle ’+’ tabs & CRLF*/
 name=translate(packur(name)) /* caseless name */
 var.name=packur(value) /* set, after URI decoding */
 /* say name ’is’ value */
 end
 return ’’
132 Accessing CICS Business Applications from the WWW

Form FunctionECITEST places a hidden field named cicsweb_function in each
form. This field contains the function associated with that form,
either login for the login form, or Test ECI for the main entry
form. ECITEST uses this to determine what function you wish
to perform.

Submit FunctionEach ECITEST form has one or more functions that you can
perform by clicking on the Submit button. ECITEST uses this
in conjunction with the Form Function variable to determine
what function to perform.

7.3.4 Passing Data to and from CICS
ECITEST passes data to the CICS program using the CICS COMMAREA passed
as part of the ECI call. When the CICS program ends, it uses the COMMAREA to
transfer data back to ECITEST.

Using the ECI to call a CICS program, pass it a COMMAREA, and receive a
COMMAREA in response is quite straightforward, especially using REXX and the
RxCICS package. The code from ECITEST shown in Figure 79 shows what is
required.

Figure 79. Initialize ECI Call Parameters

7.3.5 Generating Dynamic HTML Documents
If your application uses a document or form that is always the same, you can
store the document on the Web server’s disk and retrieve it and display it like any
other HTML document. ECITEST uses this approach for the document that is
used for you to enter your login details. This approach does not have the
flexibility you need to do many of the things that you will want to do with your Web
applications, however. Even the simplest of functions that ECITEST performs,
such as building a dynamic message line, or displaying the contents of the
returned CICS COMMAREA, cannot be achieved using static documents
retrieved from disk. You need to generate dynamic HTML documents from your
application to do this.

It is easy to create a dynamic HTML document and send it to a Web browser from
your CGI script or GoServe filter. CGI scripts simply write the document to stdout.
You can do this with the REXX Say command. You also need to build an HTTP
header and send it to stdout before you send the dynamic document. You can do
this yourself using the Say command, or use the cgiutils program included with
the IBM Internet Connection Server and other Web servers. GoServe provides a
number of ways to send dynamic documents to a Web browser, as well as
facilities to assist you in building the HTTP response header.

/* Initialize ECI call parameters */
eci.userid = var.eci_userid
eci.password = var.eci_password
eci.program_name = var.eci_program_name
if var.eci_commarea = ’’ then var.eci_commarea = ’ ’ /* can’t be 0 length
var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
if eci.return_code = 0 then
 return BuildEciTest(’ECITEST Form Processed.’)
Connectivity Tester: ECITEST 133

7.3.6 Deleting Information about the State of Processing
ECITEST provides a Quit function that allows you to finish your ECITEST
session. When you select this function, ECITEST deletes the file containing state
data from the Web server.

In your own applications, you will probably want to implement a more
sophisticated mechanism for cleaning up old state files. For example, you may
elect to purge state files that have not been used for a period of time, and purge
all state files at least once per day.
134 Accessing CICS Business Applications from the WWW

Chapter 8. A Simple CICS Access Program: CICSWEB

In this chapter we describe a sample application that shows how you can use the
Web to access data stored in a CICS file

8.1 What Does CICSWEB Do?

CICSWEB allows CICS to function as the data source for GET requests from
Web browsers. CICSWEB stores any type of object in a CICS VSAM file and
retrieves it on request.

CICSWEB provides two functions:

 • Object retrieval

 • Administration

8.1.1 CICSWEB Object Retrieval Function
This function allows you to refer to any object stored by CICSWEB in a URL in the
same way you reference an object stored on a conventional Web server. You can
type this URL directly into your Web browser, or point to it with a hypertext link
from an HTML document. If the object is a graphic, you can point to it from a
document using an HTML tag. If you store an HTML document in
CICSWEB, you can use relative URLs to reference other objects stored in the
same CICSWEB object server.

This function does not need to provide its own user interface, because it is
accessed using standard Web browser facilities. The URL that you use to
reference an object stored by CICSWEB is a little different depending on whether
you are using the Domino Go Webserver or GoServe as your Web server. An
example of a URL when using IBM Internet Connection Server is

http://bosporus.sanjose.ibm.com/cgi-bin/cicsweb/cicsweb.html

while for GoServe you need to use something like:

http://baykal.sanjose.ibm.com/$cicsweb/cicsweb.htm

(although with GoServe you can make your URL almost whatever you want).

Figure 80 on page 136 shows the major CICSWEB components.
© Copyright IBM Corp. 1998 135

Figure 80. CICSWEB Major Components

8.1.2 CICSWEB Administration Function
To retrieve and display documents stored in CICS, we need to put them there
first. CICSWEB provides three basic functions that allow you to manage the
objects that it stores:

 • Store an object

 • Delete an object

 • List objects

To use the CICSWEB administration function, enter your user ID and password
on the CICSWEB Administration Login form, then click on the function you wish
to perform.

Figure 81 on page 137 shows the CICSWEB Administration Login form.
136 Accessing CICS Business Applications from the WWW

Figure 81. CICSWEB Administration Login Page

If you select the Store Object function, CICSWEB Administration displays the
form shown in Figure 82 on page 138.
A Simple CICS Access Program: CICSWEB 137

Figure 82. CICSWEB Store HTTP Object Page

Use this form to provide the following details:

 • File name of the object you wish to store

The file name you specify is the name that the Web server uses to access the
file, since the Store Object function runs on the Web server.

 • Object Type

You select a value from the selection list provided, for example text/html for
HTML documents, text/plain for simple ASCII text files, or image/gif for
graphic interchange format (GIF) images. CICSWEB uses this value when it
builds the HTTP header that identifies the type of object it is sending to a Web
browser.

 • CICS Object Name

The name can be up to 48 characters, is case-sensitive, and should not
include embedded spaces. The value is used to build the VSAM key used to
store the object. While you can use any value that you like for the name, you
138 Accessing CICS Business Applications from the WWW

may find it convenient to use workstation-style hierarchical file names, for
example html/cicsweb.html or images/cwmast.gif.

 • Object Description

You must specify a brief description of the object up to 30 characters long.
CICSWEB displays this description when you use the List Objects function.

When you have entered the information required, click on the Store Object button
(or press Enter) to complete the function. CICSWEB notifies you when the object
has been successfully stored. If an object of the same name already exists,
CICSWEB replaces it without warning; so be careful!

If you click on either the Delete Object or List Objects button instead, CICSWEB
abandons the Store Object function and displays the form you requested.

If you select the Delete Object function, CICSWEB Administration displays the
form shown in Figure 83 on page 139.

Figure 83. CICSWEB Delete HTTP Object Page

Type the name of the object exactly as you stored it, then click the Delete Object
button (or press Enter) to complete the function. CICSWEB notifies you when the
object has been successfully deleted.

If you click on either the Store Object or List Objects button instead, CICSWEB
abandons the Delete Object function and displays the form you requested.
A Simple CICS Access Program: CICSWEB 139

If you select the List Objects function, CICSWEB Administration displays the
form shown in Figure 84 on page 140.

Figure 84. CICSWEB List HTTP Objects Page

Initially, the form is displayed without any objects listed. You can type a partial
name (or generic key) for the objects you wish to display, then click on the List
Objects button (or press Enter) to complete the function. Objects are displayed
as shown in Figure 84 on page 140, in the EBCDIC collating sequence used by
VSAM to store the objects. The list displays the object name, description, size,
and content type. The object name is displayed as a hypertext link; so you can
click on it to retrieve and display the object itself.

If you click on either the Store Object or Delete Object button instead,
CICSWEB abandons the List Objects function and displays the form you
requested.
140 Accessing CICS Business Applications from the WWW

8.2 CICSWEB Components and Interfaces

The CICSWEB application is built using components similar to those used by
ECITEST, and described in 7.2, “ECITEST Components and Interfaces” on page
127:

 • A Web server extension or gateway that provides CICSWEB application
functions as well as the link between the Web environment and CICS

 • CICS programs that perform CICSWEB application functions in the CICS
environment.

You also need a Web browser to provide the user interface.

The major difference between CICSWEB and ECITEST is that while ECITEST
provides a generic function to call any CICS program and display the data it
returns, CICSWEB includes two CICS programs that perform specific functions in
conjunction with the CICSWEB Web server component. These programs are
CWSERVER, which stores, retrieves, and deletes objects managed by
CICSWEB, and CWLIST, which performs the List Objects function.

8.3 CICSWEB Function Description

Like ECITEST, CICSWEB performs a number of functions required by most
applications that use the Web to access CICS applications and resources. These
include:

 • Invoking an application-specific Web server extension or gateway

 • Obtaining user input from the Web browser

 • Maintaining information about the state of processing

 • Passing data to and from CICS

 • Generating dynamic HTML documents

 • Deleting information about the state of processing on the Web server

CICSWEB performs these functions in the same way as ECITEST. See 7.3,
“ECITEST Function Description” on page 129 for a description of how both
ECITEST and CICSWEB perform these functions.

CICSWEB performs a number of functions over and above those performed by
ECITEST, including:

 • Adding data to CICS databases

 • Using an extended logical unit of work (LUW)

 • Retrieving data from CICS databases

 • Minimizing network data traffic

 • Using CICS user ID and password for validation

 • Managing data conversion

 • Generating HTML directly from a CICS application

We look at how CICSWEB performs each of these functions as an example of
how you can perform similar functions in your own applications.
A Simple CICS Access Program: CICSWEB 141

8.3.1 Adding Data to CICS Databases
The CICSWEB Web server CGI script or GoServe filter uses the CICS ECI to call
a CICS program called CWSERVER. CICSWEB uses the CICS COMMAREA to
transmit the contents of an object to CWSERVER. In addition to the object itself,
the COMMAREA includes information such as the name of the object, its MIME
type, length, description, and the name of the CICS file in which it is to be stored.
CWSERVER builds a VSAM record key, and writes the object to the specified file.

Since multimedia objects such as images, sound, and video can be very large,
CICSWEB breaks large objects into segments that are transmitted and stored
individually. As implemented, CICSWEB allows for up to 999 segments of about
8000 bytes each.

8.3.2 Using an Extended Logical Unit of Work
CICSWEB can require multiple calls from the Web server environment to the
CWSERVER program in CICS to transmit an object for storage. Because a partial
object is not of much use, we need to ensure that either all or none of the object
is stored. To do this, we need to define a logical unit of work (LUW) to CICS that
spans as many ECI calls as necessary to transmit the entire object.

The ECI allows you to define the scope of the LUW using the eci_extend_mode
parameter, which can be set to ECI_EXTENDED if the LUW is to be continued on
subsequent calls, or ECI_NO_EXTEND for the last or only call in an LUW. Using the
RxCICS interface, you specify this as follows:

 /* Initialize ECI call parameters */
 eci.userid = var.eci_userid
 eci.password = var.eci_password
 eci.program_name = ’CWSERVER’
 eci.extend_mode = "ECI_EXTENDED" /* Multiple calls in LUW */

 /* Call the program via ECI */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 :
 :
 eci.extend_mode = "ECI_NO_EXTEND" /* This is last call in LUW */
 /* Call the program via ECI */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)

Alternatively, you can use ECI_EXTENDED for all your ECI calls to the CICS program,
then terminate the LUW with an explicit call to commit changed resources as
follows:

 eci.program_name = ’’
 eci.extend_mode = "ECI_COMMIT" /* End LUW */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)

8.3.3 Retrieving Data from CICS Databases
CICSWEB retrieves an object from CICS by using the ECI to call CWSERVER to
retrieve the first (or only) segment in an object. CWSERVER also returns the size
of the object, the MIME type, and the number of segments. If the object spans
more than one object, additional calls are made to CWSERVER to retrieve the
remaining segments.
142 Accessing CICS Business Applications from the WWW

As the Web server component of CICSWEB receives each segment, it sends it
immediately to the Web server. When using GoServe, each segment is sent to
the Web browser immediately, so that retrieval from CICS and transmission to the
Web browser are overlapped, improving response time.

8.3.4 Minimizing Network Data Traffic
When storing and retrieving objects, most data is transmitted in only one
direction, either to or from CICS. The COMMAREA used to transmit the data
remains the same size, however. The called program can neither shorten nor
extend the COMMAREA.

Clearly, it would be detrimental to performance to transmit the largely empty
COMMAREA from CICS back to the Web server after sending a segment of an
object to CICS. To avoid this, you should make sure that the unused portion of the
COMMAREA is padded with binary zeroes. Before transmitting a COMMAREA
over a communications link, CICS scans the COMMAREA backwards from the
end until the first nonzero character is detected. CICS transmits the COMMAREA
only up to this character, and reconstitutes the full COMMAREA at the
destination.

8.3.5 Using CICS User ID and Password for Validation
CICSWEB passes the CICS user ID and password to the ECI so that they can be
validated on each call.

For CICSWEB administrative functions, the user ID and password are entered
directly by the user on the login form, and maintained for the duration of the
session on the Web server.

For retrieval requests, however, there is no way for the user to provide a user ID
or password. The user could simply be clicking on a hypertext link in an HTML on
display and have no idea that the document is stored in a CICS database.
CICSWEB has a user ID and password embedded in the code that it uses when
performing retrieve requests.

8.3.6 Generating HTML Directly from a CICS Application
As the number of documents that your application uses increases, so does the
amount of code required to generate these documents.

CICSWEB generates three different dynamic HTML documents that you use to
store, delete, and list documents managed by CICSWEB. To reduce the code
required to generate these documents, CICSWEB segments each document into
a header, body, and footer. The header and footer are kept the same for each
document, so that common code can be used to generate them. Unique code is
then required only to generate the body of each document.

The code to generate the document header and footer, as well as the document
body for the Store Object and Delete Object functions is part of the Web server
extension; the CICSWEB CGI script or GoServe filter. For the List Objects
function, however, the HTML that displays the table of objects displayed is
generated directly by the CWLIST CICS program, and simply incorporated into
the document as it is being built on the Web server. See program CWLIST in
A Simple CICS Access Program: CICSWEB 143

Appendix B, “CICSWEB Source Listings” on page 167 for the source code of the
HTML-aware COBOL program that does this.

8.3.7 Managing Data Conversion
For our CICSWEB sample application, the CICS object server was a CICS/ESA
system using EBCDIC character encoding, while the Web server uses the ASCII
encoding of its OS/2 platform. Consequently, we need to ensure that
ASCII-to-EBCDIC conversion is performed when required. When using CICS
DPL (used by the CICS ECI), CICS can perform data conversion of the
COMMAREA contents for you. Conversion is performed at the destination system
if necessary, and in the case of a CICS/ESA system, defined for each program in
the CICS DFHCNV table.

For CICSWEB, we have two CICS programs, CWSERVER and CWLIST, each
with different data conversion needs. CWSERVER requires conversion of some
control information in the COMMAREA, but not for the contents of any objects
being transferred. CWLIST, on the other hand, deals only with character data,
and its DFHCNV entry specifies that EBCDIC-ASCII translation be performed on
the entire contents of the COMMAREA.
144 Accessing CICS Business Applications from the WWW

Chapter 9. CICS State Management Program: CICSSTAT

In this chapter we describe a sample application showing how you can use a
generalized state management program to handle CICS resources related to the
information about the state of processing, on behalf of CICS/ESA Web server
programs that need to save data across invocations. To illustrate how to use state
management, we also wrote a sample of a CICS Web server application that can
build, modify, and destroy a list held on CICS temporary storage.

For full listings of the source code for these sample programs see Appendix C,
“CICS/ESA State Management Sample” on page 193.

9.1 How Is CICSSTAT Invoked?

CICSSTAT can be invoked in three ways, and under a variety of transactions:

 • The transaction CWBT causes CICSSTAT to be invoked directly. When
invoked with this transaction, CICSSTAT performs its time out management
function.

 • The transaction CWBP causes CICSSTAT to release all information about the
state of processing and to delete its anchor block from temporary storage.

 • If it was not invoked under one of the above transactions, CICSSTAT assumes
that it was linked to by a program wishing to use its state management
facilities. In this case, it assumes that it was passed a COMMAREA containing
information about the request.

9.2 What Does CICSSTAT Do?

CICSSTAT provides the following facilities to CICS/ESA Web
pseudoconversation applications that need to store information about the state of
processing across invocations of themselves:

 • Allocates a unique identifier to a pseudoconversation.
 • Allocates an area of CICS storage to be used to store information about the

state of processing across invocations of the programs managing the
pseudoconversation.

 • Retrieves the information about the state of processing for a given
pseudoconversation.

 • Updates the information about the state of processing for a given
pseudoconversation.

 • Destroys the information about the state of processing for a given
pseudoconversation.

 • Destroys information about the state of processing for pseudoconversations
that have not been active for longer than the specified time out period.

 • Destroys information about the state of processing for all
pseudoconversations.

9.2.1 CICSSTAT Single-Threading
We need a locking mechanism to be able to ensure that only one instance of
CICSSTAT is executing at one moment. This avoids the possibility of concurrent
updates to our state table, which could cause unpredictable results such as:
© Copyright IBM Corp. 1998 145

 • Allocating the same unique identifier to two pseudoconversations

 • Corrupting our state block chain.

We use the EXEC CICS ENQ and EXEC CICS DEQ commands to provide the
locking. The ENQ defaults to SUSPEND, so if another task already has the lock,
we wait until it is freed. Any excessive amount of waiting is likely to result in time
outs on the Web browser or a CICS client if used. The lock is held by one task for
a relatively short period, so this is a problem only when a very large number of
Web transactions are being processed. If you have this problem, you may prefer
to change the ENQ to have the NOSUSPEND option, so that control is returned
immediately to CICSSTAT, which can then return an appropriate return code to
the Web server.

9.2.2 The CICSSTAT Anchor Block
We need a piece of storage in which to put the CICSSTAT information about the
state of processing. This area of storage must be accessible by multiple
instances of CICSSTAT. We call this piece of storage the state control block
anchor (SCBA). It resides on temporary storage; this means we need not worry
about how to pass the address of the SCBA from one invocation of CICSSTAT to
another. Any instance of CICSSTAT simply has to perform a READQ TS to copy
the SCBA into its local storage. Our locking mechanism ensures that it cannot be
updated between the time we read-in the TS record, and write back the new one.
We put an eyecatcher at the front of the SCBA, so that it can be easily found in a
dump. The SCBA contains the following information:

 • Eyecatcher

 • Forward pointer to first block of information about the state of processing

 • Backward pointer to last block of information about the state of processing

 • Unique identifier count

 • Timestamp containing the time at which this SCBA was created

If you are implementing CICSSTAT as a Task Related User Exit (TRUE), then you
can store the information in the Global Work Area for the TRUE, rather than on
temporary storage.

If the READQ TS returns the QUEUEID error, then we know that this instance of
CICSSTAT is the first since CICS was started, or since the last SCBA was deleted
by an earlier CWBP transaction (see 9.3.2, “CICSSTAT Purge Processing” on
page 149). In this situation, we build a new SCBA and write it to temporary
storage. Any other error is treated as a logic error.

A message is written to the operator whenever an SCBA is created or deleted.
You may wish to add extra messages to allow you to track any changes to your
SCBA.

9.2.3 CICSSTAT COMMAREA Structure
If CICSSTAT is not running under the CWBP or CWBT transactions, it assumes
that it was invoked by an EXEC CICS LINK issued by another program. In this
case, the COMMAREA passed to CICSSTAT must contain the following
information:
146 Accessing CICS Business Applications from the WWW

EyecatcherThe eyecatcher is provided for debugging purposes. If required, you
can use the eyecatcher to identify the program that invoked
CICSSTAT.

Function A 1-byte character field identifying the reason that CICSSTAT was
invoked. This must be one of the following:

C (Create)

S (Store)

R (Retrieve)

D (Destroy)

Return CodeA 1-byte return code indicating whether the request was successful,
or why a request failed.

Handle The 4-byte unique identifier used to map information about the state of
processing to a specific pseudoconversation. It is allocated to a
specific pseudoconversation on the create call, and must be
specified on all subsequent calls to CICSSTAT to update that
state data.

9.2.4 Creating a State Block
When called with the create function, CICSSTAT creates a new state block, and
adds it to its doubly linked list of state blocks. It uses an EXEC CICS GETMAIN
specifying the SHARED parameter, so that the storage is not released at the
termination of the task under which the GETMAIN is issued. Once the storage is
acquired, pointers in the new and existing SCBs and the first and last state blocks
pointers in the SCBA are updated to add the block to the chain.

If you decide you need variable-length information about the state of processing,
you must change the GETMAIN to use a length passed in the COMMAREA,
rather than a hard-coded value.

A 4-byte handle (an unsigned integer) that uniquely identifies this state block is
returned to the caller. Any subsequent request to update this state block must
provide this 4-byte handle.

The state block has the following structure:

STATE_EYECATCHER4-byte eyecatcher for debugging purposes

STATE_FORWARD_PTRPointer to the next information about the state of
processing block in the chain

STATE_BACKWARD_PTRPointer to the previous information about the state of
processing block in the chain

STATE_HANDLE4-byte field containing the unique identifier for this information
about the state of processing

STATE_TIMESTAMPPacked decimal field containing a timestamp of the last time
this information about the state of processing was
accessed.

STATE_USER_DATA256 bytes to store user data.

You are not tied to using 256 bytes for your information about the state of
processing. If you need more or less, you can change the hard-coded values. If
CICS State Management Program: CICSSTAT 147

the amounts of data vary greatly from one application to the next, you might
prefer to change the COMMAREA so that the caller can specify a length of
information about the state of processing required, and CICSSTAT can return a
pointer to the state data, rather than a copy of it.

9.2.5 CICSSTAT Create Function
Application programs wishing to allocate some information about the state of
processing use this function. The required input parameter is C in the function
byte.

CICSSSTAT retrieves the unique identifier count from the anchor block,
increments it, and uses the new value as the unique identifier for this state block.
CICSSTAT also updates the counter.

A new area of storage for the new state block is obtained with GETMAIN, and
chained off the list.

The timestamp field in the information about the state of processing block is
updated with the current time.

The unique identifier is placed in the handle field in the COMMAREA to be
passed back to the caller, and any information about the state of processing in
the COMMAREA is copied into the state block user data area.

9.2.6 CICSSTAT Retrieve Function
Application programs wishing to retrieve the information about the state of
processing associated with their pseudoconversation use this function.
CICSSTAT expects two input parameters on the call:

The handle, which uniquely identifies the state block requested

The function byte, which must be set to R.

CICSSTAT goes through the chain of state blocks until it finds the specified
unique identifier, and then copies the information about the state of processing in
the state block into the COMMAREA, to be passed back to the application. The
timestamp in the information about the state of processing is updated.

9.2.7 CICSSTAT Store Function
Application programs wishing to update the information about the state of
processing associated with their pseudoconversation use this function.
CICSSTAT expects these input parameters on the call:

 • The handle, which uniquely identifies the state block requested

 • The function byte,which must be set to S

 • The user data to be put into the state block.

CICSSTAT goes through the chain of state blocks until it finds the specified
unique identifier, and then copies the information about the state of processing in
the COMMAREA into the state block. The timestamp in the information about the
state of processing is updated.
148 Accessing CICS Business Applications from the WWW

9.2.8 CICSSTAT Destroy Function
Application programs wishing to destroy the information about the state of
processing associated with their pseudoconversation use this function.
CICSSTAT expects two input parameters on the call:

 • The handle, which uniquely identifies the state block requested

 • The function byte, which must be set to D.

CICSSTAT unchains the state block from the list, and then issues FREEMAIN to
release the storage.

9.3 CICSTAT Routines

In this section we describe the routines CICSSTAT performs.

9.3.1 CICSSTAT Timeout Processing
When CICSSTAT is invoked using the transaction CWBT, it performs its timeout
processing. The purpose is to destroy any state blocks that have expired; that is,
the interval between the current time and the time at which those state blocks
were last accessed is greater than the hard-coded timeout interval. You can
change the value of the timeout interval to suit your installation.

Any application that attempts to access information about the state of processing
that has been purged receives the no-match return code X'04' in the return code
field in the COMMAREA following the link to CICSSTAT.

CWBT currently runs only if you enter the transaction at the terminal. You may
prefer to automate this function by adding code to cause CWBT to reschedule
itself to run at regular intervals. You can do this using the EXEC CICS START
command with the interval parameter.

When invoked, the timeout code works through the list of state blocks, looking for
those that have timed out. These blocks are unchained and released, and the
calculations are done using times in absolute format. As a result, all the
arithmetic is done in packed decimal format.

9.3.2 CICSSTAT Purge Processing
The purge routine is invoked by starting transaction CWBP. It can either be
entered at a terminal or started by another program.

This is the routine invoked if we are running under transid CWBP. The routine
starts at the beginning of the chain, and releases all the information about the
state of processing blocks. When all have been released, it deletes our TS queue
and issues a message to the console to say that state management has been
terminated.

9.3.3 CICSSTAT Error Handling
The error handling in CICSSTAT is limited. If an error is detected, a message is
written to the operator, and a bad return code is passed back to the caller in the
COMMAREA. No distinction is made between catastrophic and non catastrophic
errors; we always continue. You may prefer to change CICSSTAT so that it
always terminates state management when there is an error, or you may prefer to
CICS State Management Program: CICSSTAT 149

add some granularity, taking each error in turn, and making a decision about
whether or not to continue state management.

9.4 Sample Scenario Using CICSSTAT

We coded a simple CICS/ESA program to illustrate how to use CICSSTAT state
management for a CICS/ESA Web server application. It is a very simple
application that allows you to build and display a list of items kept on CICS
temporary storage. It uses CICSSTAT to hold state information about the name
and address of the user, and the number of items on the temporary storage
queue.

Figure 85 on page 150 shows the scenario we use.

Figure 85. Sample Connectivity Scenario for CICSSTAT

We coded:

 • A REXX CGI script (see Appendix C.1, “REXX CGI Script” on page 193)
 • A COBOL CICS/ESA application (see Appendix C.2, “COBOL CICS/ESA Web

Server Application Program” on page 195).

We placed most of the function in the CICS/ESA program rather than in the CGI
script. All the state management and the forms building are done by our
HTML-aware COBOL CICS/ESA application. We parsed the forms input in the
CGI script rather than in the COBOL program, because it was quicker. This also
reduces the amount of data that has to be passed to CICS/ESA in the
COMMAREA. An alternative implementation of the CGI script could pass the
unchanged forms input to the CICS/ESA application in the COMMAREA, for the
CICS/ESA program to do the parsing.

After parsing the data, the CGI script invokes the ECI interface of the CICS client
to invoke the CICS/ESA application.

The first time the ECI interface is invoked, there is no forms data for the CGI
script to pass, so it simply passes a COMMAREA with the function field set to
IDENTIFY. This tells the CICS/ESA application that this is a new request.

On subsequent invocations, the CGI script parses any forms data, which it
passes to CICS/ESA in the COMMAREA.

All output from the CICS/ESA application is piped directly back to the Web
browser, unchanged.
150 Accessing CICS Business Applications from the WWW

The COMMAREA passed to the COBOL application contains the following (but
not on every call):

 • Function to be performed
 • Name of user (if known)
 • Address of user (if known)
 • Action requested by user
 • Item to be added to the list

The function identifies which routine in the COBOL program is to be invoked:

Identify Call CICSSTAT with the create function to assign us a state block.
Place the returned unique identifier in a form asking the user to
register, update the function in the form to REGISTER, and return the
form to the Web server.

Register Extract the unique identifier for this pseudoconversation from the form.
Perform an EXEC CICS LINK to CICSSTAT with the retrieve function,
passing the unique identifier, to make sure that we have a state data
area.

Store the name and address in the information about the state of the
processing area. Build a new form with function Add, putting name,
address, and unique identifier in hidden fields, and send the form to
the Web server.

Add Extract the unique identifier for this pseudoconversation from the form.
Perform an EXEC CICS LINK to CICSSTATE passing the unique
identifier, to make sure that we have information about the state of the
processing area.

Check that the name and address in the form match those in the state
data.

Check the action requested by the user (user can choose an ADD or a
DELETE button):

If the user chooses ADD, do the WRITEQ and update the state
data count, linking to CICSSTAT with function Store, then build a
new form displaying the items currently in the list using a READQ
TS to read each item from the temporary storage queue.

If the requested action is DELETE, issue a DELETEQ and perform
an EXEC CICS LINK to CICSSTAT with the DESTROY function.
Then build a form saying we have deleted the queue.

9.4.1 Error Handling
The error handling in this sample is limited. If an error is detected, we simply
return an HTML document to the Web browser indicating what the problem was.
It may be that the sample was invoked with an invalid function, an EXEC CICS
call failed with an unexpected condition, or the information about the state of
processing held in the form did not match that held in CICS/ESA.

9.4.2 Why Use Shared Storage Rather than Temporary Storage?
You may ask why this sample application uses CICS shared storage for the user
information about the state of processing rather than CICS temporary storage.
We chose this design primarily because of the better performance it offers, but
other considerations were:
CICS State Management Program: CICSSTAT 151

 • It uses less file I/O

 • It gives CICSSTAT a greater degree of control

 • It makes it easier to convert to a task-related user exit
152 Accessing CICS Business Applications from the WWW

Chapter 10. CICS Sockets Sample

In this chapter we describe a simple application that illustrates how you might use
the TCP/IP Sockets interface to access a CICS/ESA application from the Web.
Although the problem might be solved much more easily using the new CWI, this
sample illustrates very well the usage of the Sockets interface. For details on
using the CICS to TCP/IP for MVS Sockets Interface, see CICS/ESA and TCP/IP
for MVS Sockets Interface.

Source code for SOCKTEST components is included in Appendix D, “CICS/ESA
Sockets Application Sample” on page 215.

10.1 SOCKTEST Environment

SOCKTEST consists of the following components:

 • A CGI script that provides the link between the Web environment and
CICS/ESA

 • A set of C functions used by the CGI script to issue sockets calls

 • A CIC/ESA application that performs the requested application function.

These components use the following interfaces:

 • The mechanisms defined for the CICS Internet Gateway for the AIX Web
server, which the Web server uses to communicate with the CGI script

 • TCP/IP sockets, which the CGI script uses to communicate with CICS/ESA.

10.1.1 Connectivity Scenario
We used the IBM Internet Connection Server for AIX as our Web server.

We used TCP/IP for MVS Version 3.1, and the IBM CICS to TCP/IP for MVS
Version 2 Release 2.1 Sockets Interface to allow the Web server to communicate
with CICS/ESA Version 4.1 using the sockets API. Figure 86 on page 153 shows
the major components required.

Figure 86. Sample Connectivity Scenario for SOCKTEST

10.2 What Does SOCKTEST Do?

SOCKTEST presents the user with a form asking for:

TCP/IP HTTP TCP/IP

Web Browser

AIX

Web Server

MVS/ESA
CICS/ESAWeb Server

TCP/IP for MVS

CICS Application Server
© Copyright IBM Corp. 1998 153

 • The IP address of the MVS system on which CICS/ESA is running

 • The port at which the sockets feature listener transaction is running (specified
on CSKE)

 • The name of the server transaction (TCP1).

After a pseudoconversation is established, the user is presented with a new form
that allows the user to specify:

 • Queue name

 • Action to perform (READ,WRITE, or DELETE) on the queue

 • Optional data for the queue. (The READ operation can only be performed on
an existing queue).

If the queue does not exist, an error is returned to the Web browser

Function is split between the client and server components, with both being
HTML-aware and handling information about the state of processing.

Note: The connections between the client and server are ephemeral. The
connection is established, the data transferred, and the connection is then
closed. This prevents excessive use of CICS resources as a result of holding
connections during user think time. Because all client requests go through the
supplied sockets feature listener transaction, we can have multiple requests to
the same CICS region from many concurrent clients. The CGI script does the
following:

1. Builds the initial form and sends it to the Web browser, with state data stored
in hidden fields in the form.

2. Is reinvoked to process data input by the user.

3. Establishes a sockets connection with the CICS/ESA server program.

4. Sends the forms input to the CICS/ESA server program using sockets calls.

5. Retrieves response from the CICS/ESA server program using sockets calls.

6. Returns the HTML output by the CICS/ESA server program to the Web
browser.

7. Goes back to Step 2.

The CICS/ESA server does the following:

1. Issues a sockets call to retrieve the forms input sent by the Web server.

2. Analyzes the user input to the form.

3. Performs the requested action on CICS temporary storage.

4. Builds a new HTML form to be returned to the Web browser.

5. Issues a sockets call to send the form to the Web server.

10.2.1 Generating Dynamic HTML Documents
The CICS/ESA application program generates HTML dynamically; this keeps the
client code relatively simple, but means that there is a large working-storage
section containing all the forms data.
154 Accessing CICS Business Applications from the WWW

Note that this application does not include a METHOD parameter for the form that
is sent to the Web browser. In this case, the method defaults to GET. The forms
data is therefore concatenated with the URL by the Web browser.

10.3 SOCKTEST Sample Programs Management

In this section, we explain how to build and run the sample programs.

10.3.1 Building the SOCKTEST Sample Programs
To build the client, issue the following commands on AIX:

cc -c sockets.c
cc -o client1.exe client1.c sockets.o

This builds an executable module called client1.exe, which should be copied into
a directory from which it can be accessed by the Web server.

To build the CICS/ESA server program, modify the JCL provided in D.3, “MVS
JCL to Compile COBOL Program” on page 228 and run the JCL on an MVS
system that has TCP/IP and the CICS sockets feature installed. After the
executable module is put in the load library, add and install a CICS system
definition (CSD) file definition for the program (TCPSERV1) and the transaction
(TCP1).

10.3.2 Running the SOCKTEST Sample Programs
Before running the client part of the sample, you must enable the sockets feature
on the CICS/ESA system. Do this by running the CSKE transaction on
CICS/ESA. After the sockets feature is enabled, you can run the client part by
executing the client1.exe CGI script from a Web browser.

10.4 Information about the State of Processing for SOCKTEST

Hidden fields are used in the forms to allow information about the state of
processing to be maintained for the pseudoconversation:

 • The initial form, has three input fields: port, address, and transaction ID.

 • Subsequent forms, have two input fields, queue name and queue data, and a
selection box for the operation.

 • The client knows about all six variables.

 • In the first form only the port, address, and transaction ID are displayed; the
other three variables are hidden.

 • In subsequent forms, the port, address, and transaction ID are hidden but the
other three variables are displayed.

 • The hidden port, address, and transaction ID variables are required because
the client basically makes a new call to CICS for each operation. The client
must therefore have this information each time it connects to the CICS region
using socket calls.
CICS Sockets Sample 155

156 Accessing CICS Business Applications from the WWW

Appendix A. ECITEST Source Listings

This Appendix includes source listings for the various ECITEST components:

 • Login HTML document for use with the IBM Internet Connection Server.

 • Login HTML document for use with GoServe.

 • REXX CGI script for use with the IBM Internet Connection Server.

 • REXX filter for use with GoServe.

A.1 ECITEST.HTML: Login HTML Document for Use with the IBM Internet Connection
Server

<!doctype html public "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>Test CICS ECI Program</title></head>
<body>
<p>
<h1>Test CICS ECI Program</h1>
<form action="/cgi-bin/ecitest" method="POST">
Enter CICS Login:
User ID <input NAME="eci_userid" VALUE="" SIZE=8>
Password <input Type="password" NAME="eci_password" VALUE="" SIZE=8> <P>
<input type="hidden" NAME="cicsweb_function" VALUE=login><P>

Please enter your user ID and password,
then click Test ECI to proceed<p>
<input type="submit" name="submit" value="Test ECI">
<input type="reset">
</form>
</body></html>

A.2 ECITEST.HTM: Login HTML Document for Use with GoServe
<!doctype html public "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>Test CICS ECI Program</title></head>
<body>
<p>
<h1>Test CICS ECI Program</h1>
<form action="$ecitest" method="POST">
Enter CICS Login:
User ID <input NAME="eci_userid" VALUE="" SIZE=8>
Password <input Type="password" NAME="eci_password" VALUE="" SIZE=8> <P>
<input type="hidden" NAME="cicsweb_function" VALUE=login><P>

Please enter your user ID and password,
then click Test ECI to proceed<p>
<input type="submit" name="submit" value="Test ECI">
<input type="reset">
</form>
</body></html>

A.3 ECITEST.CMD: REXX CGI Script for Use with the IBM Internet Connection Server
/**/
/* CGI-BIN script to invoke sample CICS-ECI application tester */
/* - Saves user ID and password to file on Web Server */
/* - Generates and displays form with program name and COMMAREA */
/* - Calls the program, and displays COMMAREA returned */
/* */
/* Invokes RxECI to call specified application */
/* */
/**/
verb = value(’REQUEST_METHOD’,,’OS2ENVIRONMENT’)
/* ’@CGIUTILS -ct text/html’ */
if verb = ’POST’ then do /* Only support POSTs for forms */
© Copyright IBM Corp. 1998 157

 /* get the incoming data */
 eciparms = charin(,,value(’CONTENT_LENGTH’,,’OS2ENVIRONMENT’))
 /* Parse input vars from form into var.x */
 call parsevar eciparms
end
else /* not a form, return error message to user */
 return response(’badreq’,’is not a valid REQUEST_METHOD: ’verb)

/* Check if new login attempt */
if translate(var.cicsweb_function) = ’LOGIN’ then do /* new session */
 state = startsession()
 if state \= ’’ then /* display any error message returned */
 return response(’badreq’, state)
end /* LOGIN */
else do /* Check that we have a valid current session */
 session = checksession()
 if session \= ’’ then /* display any error message returned */
 return response(’badreq’, session)
end /* check session status */

/* Check if processing an incoming form, or a request for a new form */
/* - each form has a hidden field (cicsweb_function) with a value that*/
/* can be checked against the SUBMIT function the user has selected */
if var.submit = ’’ then /* User has pressed ENTER */
 var.submit = var.cicsweb_function
if var.submit \= var.cicsweb_function then do /* request new form */
 /* Now build the document for requested function and send to user */
 select
 when var.submit = "Test ECI" then
 return BuildEciTest(’’)
 when var.submit = "QUIT" then do
 return QuitWeb(var.handle)
 end
 otherwise return response(’badreq’, ’asked for unknown form’)
 end /* select form to display */
end /* build new form */
else do /* Process input from form */
 /* Now build the document for requested function and send to user */
 select
 when var.submit = "Test ECI" then
 return ProcessEciTest()
 otherwise return response(’badreq’, ’asked for unknown form’)
 end /* Process Form Input */
end /* build new form */

return say ’We should never get here’

/**/
/* BuildEciTest: Generic form to execute pgm via ECI */
/* COMMAREA returned from program is displayed */
/**/
BuildEciTest: procedure expose var. eci.
 parse arg message
 title = ’Test ECI Program’
 function = ’Test ECI’
 if message = ’’ then /* generate default message */
 message = ’Please enter information and click button for function to perform’
 if length(var.eci_commarea) < 60 then do /* generate default message*/
 var.eci_commarea = var.eci_commarea||copies(’.’, 60-length(var.eci_commarea))
 eci.commarea_length = 60
 end
 if var.eci_program_name = ’’ then var.eci_program_name = ’SAMPLE’
 else var.eci_program_name = translate(var.eci_program_name) /* upper case */
 call Build_header title, function, var.handle, var.eci_userid, message
 say ’Program Name <input NAME="eci_program_name" SIZE=8 value="’
 say var.eci_program_name||’"><p>’
 say ’Commarea<p><pre>’
 if datatype(eci.commarea_length, ’N’) then do
 say ’|...+....1....+....2....+....3....+....4....+....5....+....6....<p>’
 do i = 1 to (eci.commarea_length % 64) + 1
 say substr(var.eci_commarea, 1 + 64*(i -1), 64)||’<p>’
 end
 end
 say ’<textarea NAME="eci_commarea" rows=5 cols=64>’
 say var.eci_commarea’</textarea><p></pre>’
 call Build_footer
 return ’’
158 Accessing CICS Business Applications from the WWW

/**/
/* Build_Header: Build document and form header for html document */
/**/
Build_Header: procedure
 parse arg title, function, handle, userid, message
 /* Call CGIUTILS to build HTML Header */
 ’@cgiutils -ct text/html’
 say ’<!doctype html public "-//IETF//DTD HTML 2.0//EN">’
 say ’<html><head>’
 say ’<title>’title’</title></head>’
 say ’<body>’
 say ’<h1>’title’</h1>’
 say ’<hr>’message’<hr>’
 say ’<form action="/cgi-bin/ecitest" method="POST">’
 say ’<input type="hidden" NAME="cicsweb_function" VALUE="’||function||’">’
 say ’<input type="hidden" NAME="handle" VALUE="’||handle||’">’
 say ’<input type="hidden" NAME="eci_userid" VALUE="’||userid||’">’
 return ’’

/**/
/* Build_Footer: Build document and form footer for html document */
/**/
Build_Footer: procedure
 say ’<input type="submit" name="submit" value="Test ECI">’
 say ’<input type="reset">’
 say ’<input type="submit" name="submit" value="QUIT">’
 say ’</form></body></html>’
 return ’’

/**/
/* ECIMSGTEXT: Display Error Message from ECI Call */
/* e.g. variable eci_userid placed in var.eci_userid */
/**/
ecimsgtext: procedure expose ECI.
 msgfile = "rxeci.msg"
 msgtext = ’Unknown ECI return code’
 do until lines(msgfile) = 0
 line = linein(msgfile)
 parse var line returncode message
 if ECI.return_code = returncode then msgtext = message
 end
 rc = lineout(msgfile) /* close file */
 return msgtext

/**/
/* PARSEVAR: Extract variables from form */
/* e.g. variable eci_userid placed in var.eci_userid */
/**/
parsevar: procedure expose var.
 /* set VAR.x variables from the incoming data stream */
 parse arg data
 VAR.=’’ /* null string unless set */
 data=data’&’ /* set end condition */
 do until data=’’ /* each value */
 parse var data assign ’&’ data /* split off name=value */
 parse var assign name ’=’ value /* separate */
 value=translate(value, ’ ’, ’2b090a0d’x) /* handle ’+’, tabs, and CRLF */
 name=translate(packur(name)) /* caseless name */
 var.name=packur(value) /* set, after URI decoding */
 /* say name ’is’ value */
 end
 return ’’

/**/
/* ProcessEciTest: Process Form to Exercise ECI program */
/**/
ProcessEciTest: procedure expose var. eci.
 /* register RxECI functions */
 rc = rxfuncdrop(’ECI’)
 If rxfuncquery(’ECI’) Then Do
 If rxfuncadd(’ECI’, ’RXECI’, ’RxECI’) Then
 return BuildEciTest(’Error initializing RxECI’)
 say "ECI registered"
 End

 /* Initialize ECI call parameters */
 eci.userid = var.eci_userid
 eci.password = var.eci_password
ECITEST Source Listings 159

 eci.program_name = var.eci_program_name
 if var.eci_commarea = ’’ then var.eci_commarea = ’ ’ /* can’t be 0 length */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code = 0 then
 return BuildEciTest(’ECITEST Form Processed.’)
 return BuildEciTest(’ECI Error. RC =’eci.return_code EciMsgText() ECI.abend_code)

/**/
/* QuitWeb: Delete State File and Return to Login Screen */
/**/
QuitWeb: procedure
 parse arg handle
 port = extract(’serverport’)
 ’@del tmp\CW’||handle||’.’||port
 ’@cgiutils -ct text/html -status 302 -uri ecitest.html -noel’
 if port = 80 then port = ’’
 else port = ’:’||port
 say ’Location: http://’extract(serveraddr)||port’/ecitest.html’
 say ’’
 return ’’

/**/
/* STARTSESSION: build server session-state file */
/**/
startsession: procedure expose var. eci.
 if (var.eci_userid = ’’) | (var.eci_password = ’’) then
 return ’needs to include user ID and password’
 var.handle = extract(transaction) /* Save for later use */
 /* generate new state file name */
 statefile = ’tmp/CW’||var.handle’.’extract(serverport)
 call lineout statefile, var.eci_userid, 1 /* userid to state file */
 call lineout statefile, var.eci_password /* pw to state file */
 return ’’

/**/
/* CHECKSESSION: validate request against existing state file */
/* Checks that userid in state file matches userid sent from form */
/**/
checksession: procedure expose var. eci.
 /* generate state file name */
 statefile = ’tmp/CW’||var.handle’.’extract(serverport)
 if stream(statefile, ’c’, ’query exists’) = ’’ then /* Not found */
 return ’No current session exists. Please login’
 if linein(statefile, 1) \= var.eci_userid then
 return "We don’t have a record of your user id. Please login again"
 var.eci_password = linein(statefile) /* get pw from state file */
 rc = stream(statefile, ’c’, ’close’) /* Close the state file */
 return ’’

/**/
/* The following functions are designed to be compatible with GoServe */
/* functions, and have been written to facilitate porting GoServe */
/* filters to use the cgi-bin interface. */
/**/

/**/
/* Clientname: Return server name (modelled after GoServe) */
/**/
Clientname: procedure
 return value(’REMOTE_HOST’,,’OS2ENVIRONMENT’)

/**/
/* Extract: Return value of various settings */
/**/
extract: procedure
 parse upper arg var
 select
 when var = "DATADIR" then
 return value(’REMOTE_ADDR’,,’OS2ENVIRONMENT’)
 when var = "CLIENTADDR" then
 return value(’REMOTE_ADDR’,,’OS2ENVIRONMENT’)
 when var = "SERVERADDR" then
 return value(’SERVER_NAME’,,’OS2ENVIRONMENT’)
 when var = "SERVERPORT" then
 return value(’SERVER_PORT’,,’OS2ENVIRONMENT’)
 when var = "SERVERPROTOCOL" then
 return value(’SERVER_PROTOCOL’,,’OS2ENVIRONMENT’)
 when var = "SERVERSOFTWARE" then
160 Accessing CICS Business Applications from the WWW

 return value(’SERVER_SOFTWARE’,,’OS2ENVIRONMENT’)
 when var = "TRANSACTION" then do /* get a session handle */
 /* return a quasi-unique number for building a session handle */
 statefile = ’cwhandle.seq’
 handle = 1
 if stream(statefile, ’c’, ’query exists’) = ’’ then /* Not found*/
 call lineout statefile, ’1’, 1 /* Initialise file */
 else do /* Increment handle sequence number */
 handle = linein(statefile, 1) + 1
 call lineout statefile, handle, 1 /* Update file */
 end
 rc = stream(statefile, ’c’, ’close’) /* Close the seq. file */
 return handle
 end
 otherwise return ’UNKNOWN’
 end

/**/
/* Packur: */
/* This procedure takes an input string, and converts characters */
/* encoded as escape sequences (e.g. %xx) back to the character that */
/* they represent. */
/**/
packur: procedure
 parse arg outstring ’%’ rest
 do while length(rest) > 1
 outstring = outstring||x2c(substr(rest,1,2)) /* decode value */
 rest = substr(rest,3)
 parse var rest next ’%’ rest
 outstring = outstring||next
 end
 return outstring

/**/
/* Response: Send an error response to client */
/**/
response: procedure
 parse arg request, message
 select
 when request=’badreq’ then use=’400 Bad Request Syntax’
 when request=’notfound’ then use=’404 Not found’
 when request=’forbid’ then use=’403 Forbidden’
 when request=’unauth’ then use=’401 Unauthorized’
 end /* Add others to this list as needed */
 /* Now set the response and build the response file */
 parse var use code text
 ’@cgiutils -ct text/html -status ’ code
 say ’<!doctype html public "-//IETF//DTD HTML 2.0//EN">’
 say "<html><head><title>"text"</title></head>"
 say "<body><h2>Sorry...</h2>"
 say "<p>The request from your Web client" message"."
 say "<hr>HTTP response code:" code ’[’text’]’
 say "
From server at:" servername()
 say "
Running:" server()
 say "</body></html>"
 return ’’ /* [called as function] */

/**/
/* Servername: Return server name (modelled after GoServe) */
/**/
Servername: procedure
 return value(’SERVER_NAME’,,’OS2ENVIRONMENT’)

/**/
/* Server: Return server software (modelled after GoServe) */
/**/
Server: procedure
 return value(’SERVER_SOFTWARE’,,’OS2ENVIRONMENT’)
ECITEST Source Listings 161

A.4 ECITEST.80: REXX Filter for Use with GoServe
/**/
/* GoServe filter to invoke sample CICS-ECI application tester */
/* Invokes RxECI to call specified application */
/* */
/* Arguments: */
/* verb - how called (only POST supported) */
/* pgmid - selector after cgi-bin/cicsweb/ stripped from front */
/* (optional - used to provide program name to test) */
/**/
parse arg verb
if verb = ’POST’ then do /* Only support POSTs for forms */
 ’read body var eciparms’ /* get the incoming data */
 if rc=-4 then /* body too large */
 return response(’badreq’, ’sent too much data’)
 if rc<>0 then /* e.g., invalid HTTP header */
 return response(’badreq’, ’sent data that could not be read’)
 /* Parse input vars from form into var.x */
 call parsevar(eciparms)
end
else /* not a form, return error message to user */
 return response(’badreq’,’is not a valid request’)

/* Check if new login attempt */
if translate(var.cicsweb_function) = ’LOGIN’ then do /* new session */
 state = startsession()
 if state \= ’’ then /* display any error message returned */
 return response(’badreq’, state)
end /* LOGIN */
else do /* Check that we have a valid current session */
 session = checksession()
 if session \= ’’ then /* display any error message returned */
 return response(’badreq’, session)
end /* check session status */

/* Check if processing an incoming form, or a request for a new form */
/* - each form has a hidden field (cicsweb_function) with a value that*/
/* can be checked against the SUBMIT function the user has selected */
if var.submit \= var.cicsweb_function then do /* request new form */
 /* Now build the document for requested function and send to user */
 select
 when var.submit = "Test ECI" then
 return BuildEciTest(’’)
 when var.submit = "QUIT" then do
 return QuitWeb(var.handle)
 end
 otherwise return response(’badreq’, ’asked for unknown form’)
 end /* select form to display */
end /* build new form */
else do /* Process input from form */
 /* Now build the document for requested function and send to user */
 select
 when var.submit = "Test ECI" then
 return ProcessEciTest()
 otherwise return response(’badreq’, ’asked for unknown form’)
 end /* Process Form Input */
end /* build new form */

return say ’We should never get here’

/**/
/* BuildEciTest: Generic form to execute pgm via ECI */
/* COMMAREA returned from program is displayed */
/**/
BuildEciTest: procedure expose var. eci.
parse arg message
title = ’Test ECI Program’
function = ’Test ECI’
if message = ’’ then /* generate default message */
 message = ’Please enter information and click button for function to perform’
if length(var.eci_commarea) < 60 then do /* generate default message */
 var.eci_commarea = var.eci_commarea||copies(’.’, 60-length(var.eci_commarea))
 eci.commarea_length = 60
end
if var.eci_program_name = ’’ then var.eci_program_name = ’SAMPLE’
else var.eci_program_name = translate(var.eci_program_name) /* upper case */
162 Accessing CICS Business Applications from the WWW

crlf=’0d0a’x
html = ’’
html = Build_header(html, title, function, var.handle, var.eci_userid, message)
html = html||’Program Name <input NAME="eci_program_name" SIZE=8 value="’
html = html||var.eci_program_name||’"><p>’crlf
html = html||’Commarea<p><pre>’crlf
if datatype(eci.commarea_length, ’N’) then do
 html = html||’|...+....1....+....2....+....3....+....4....+....5....+....6....<p>’
 do i = 1 to (eci.commarea_length % 64) + 1
 html = html||substr(var.eci_commarea, 1 + 64*(i -1), 64)||’<p>’crlf
 end
end
html = html||’<textarea NAME="eci_commarea" rows=5 cols=64>’
html = html||var.eci_commarea’</textarea><p></pre>’crlf
html = Build_footer(html)
’VAR TYPE text/html AS ECITest NAME html’
return ’’

/**/
/* Build_Header: Build document and form header for html document */
/**/
Build_Header: procedure
parse arg html, title, function, handle, userid, message
crlf=’0d0a’x
html = html||’<!doctype html public "-//IETF//DTD HTML 2.0//EN">’crlf
html = html||’<html><head>’crlf
html = html||’<title>’title’</title></head>’crlf
html = html||’<body>’crlf
html = html||’<h1>’title’</h1>’crlf
html = html||’<hr>’message’<hr>’crlf
html = html||’<form action="$ecitest" method="POST">’crlf
html = html||’<input type="hidden" NAME="cicsweb_function" VALUE="’||function||’">’crlf
html = html||’<input type="hidden" NAME="handle" VALUE="’||handle||’">’crlf
html = html||’<input type="hidden" NAME="eci_userid" VALUE="’||userid||’">’crlf
return html

/**/
/* Build_Footer: Build document and form footer for html document */
/**/
Build_Footer: procedure
parse arg html
crlf=’0d0a’x
html = html||’<input type="submit" name="submit" value="Test ECI">’crlf
html = html||’<input type="reset">’crlf
html = html||’<input type="submit" name="submit" value="QUIT">’crlf
html = html||’</form></body></html>’crlf
return html

/**/
/* ECIMSGTEXT: Display Error Message from ECI Call */
/* e.g. variable eci_userid placed in var.eci_userid */
/**/
ecimsgtext: procedure expose ECI.
 msgfile = "rxeci.msg"
 msgtext = ’Unknown ECI return code’
 do until lines(msgfile) = 0
 line = linein(msgfile)
 parse var line returncode message
 if ECI.return_code = returncode then msgtext = message
 end
 rc = lineout(msgfile) /* close file */
return msgtext

/* return code from ECI */
 ECI.return_code = "" /* respone */

/**/
/* PARSEVAR: Extract variables from form */
/* e.g. variable eci_userid placed in var.eci_userid */
/**/
parsevar: procedure expose var.
 /* set VAR.x variables from the incoming data stream */
 parse arg data
 VAR.=’’ /* null string unless set */
 data=data’&’ /* set end condition */
 do until data=’’ /* each value */
 parse var data assign ’&’ data /* split off name=value */
 parse var assign name ’=’ value /* separate */
ECITEST Source Listings 163

 value=translate(value, ’ ’, ’2b090a0d’x) /* handle ’+’, tabs, and CRLF */
 name=translate(packur(name)) /* caseless name */
 var.name=packur(value) /* set, after URI decoding */
 /* say name ’is’ value */
 end
 return ’’

/**/
/* ProcessEciTest: Process Form to Exercise ECI program */
/**/
ProcessEciTest: procedure expose var. eci.
 /* register RxECI functions */
 rc = rxfuncdrop(’ECI’)
 If rxfuncquery(’ECI’) Then Do
 If rxfuncadd(’ECI’, ’RXECI’, ’RxECI’) Then
 return BuildEciTest(’Error initializing RxECI’)
 say "ECI registered"
 End

 /* Initialize ECI call parameters */
 eci.userid = var.eci_userid
 eci.password = var.eci_password
 eci.program_name = var.eci_program_name
 if var.eci_commarea = ’’ then var.eci_commarea = ’ ’ /* can’t be 0 length */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code = 0 then
 return BuildEciTest(’ECITEST Form Processed.’)
 return BuildEciTest(’ECI Error. RC =’eci.return_code EciMsgText() ECI.abend_code)

/**/
/* QuitWeb: Delete State File and Return to Login Screen */
/**/
QuitWeb: procedure
parse arg handle
address cmd
’del tmp\CW’||handle||’.’||extract(serverport)
return ’FILE NAME ’||extract(datadir)||’ecitest.htm’

/**/
/* RESPONSE: Standard (mostly error) responses (from GoRemote) */
/* */
/* Arguments are: response type and extended message information. */
/* It uses the VAR command to send message document to Web Browser */
/**/
response: procedure
 parse arg request, message
 select
 when request=’badreq’ then use=’400 Bad Request Syntax’
 when request=’notfound’ then use=’404 Not found’
 when request=’forbid’ then use=’403 Forbidden’
 when request=’unauth’ then use=’401 Unauthorized’
 end /* Add others to this list as needed */
 /* Now set the response and build the response file */
 ’RESPONSE HTTP/1.0’ use /* Set HTTP response line */
 parse var use code text
 crlf=’0d0a’x; out=’’
 out=out||’<!doctype html public "-//IETF//DTD HTML 2.0//EN">’crlf
 out=out||"<html><head><title>"text"</title></head>"crlf
 out=out||"<body><h2>Sorry...</h2>"crlf
 out=out||"<p>The request from your Web client" message"."crlf
 out=out||"<hr>HTTP response code:" code ’[’text’]’crlf
 out=out||"
From server at:" servername()crlf
 out=out||"
Running:" server()crlf
 out=out||"</body></html>"crlf
 ’VAR TYPE text/html AS Response NAME out’ /* send it */
 return ’’ /* [called as function] */

/**/
/* STARTSESSION: build server session-state file */
/**/
startsession: procedure expose var. eci.
 if (var.eci_userid = ’’) | (var.eci_password = ’’) then
 return ’needs to include user ID and password’
 var.handle = extract(transaction) /* Save for later use */
 /* generate new state file name */
 statefile = ’tmp/CW’||var.handle’.’extract(serverport)
 call lineout statefile, var.eci_userid, 1 /* userid to state file */
 call lineout statefile, var.eci_password /* pw to state file */
164 Accessing CICS Business Applications from the WWW

 return ’’

/**/
/* CHECKSESSION: validate request against existing state file */
/* Checks that userid in state file matches userid sent from form */
/**/
checksession: procedure expose var. eci.
 /* generate state file name */
 statefile = ’tmp/CW’||var.handle’.’extract(serverport)
 if stream(statefile, ’c’, ’query exists’) = ’’ then /* Not found */
 return ’No current session exists. Please login’
 if linein(statefile, 1) \= var.eci_userid then
 return "We don’t have a record of your user id. Please login again"
 var.eci_password = linein(statefile) /* get pw from state file */
 rc = stream(statefile, ’c’, ’close’) /* Close the state file */
 return ’’
ECITEST Source Listings 165

166 Accessing CICS Business Applications from the WWW

Appendix B. CICSWEB Source Listings

This Appendix includes source listings for the various CICSWEB components:

 • Login HTML document for use with the IBM Internet Connection Server.

 • Login HTML document for use with GoServe.

 • REXX CGI script for use with the IBM Internet Connection Server.

 • REXX filter for use with GoServe.

 • CICS COBOL program to store/retrieve and delete objects.

 • CICS COBOL program to list objects.

 • CICS data conversion table.

 • VSAM file definition.

B.1 CICSWEB.HTML: Login HTML Document for Use with the Domino Go Webserver
<!doctype html public "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>CICSWEB Administration Login</title></head>
<body>
<p>
<h1>CICSWEB Administration Login</h1>
<form action="/cgi-bin/cicsweb" method="POST">
<p>User ID <input NAME="eci_userid" VALUE="" SIZE=8>
Password <input Type="password" NAME="eci_password" VALUE="" SIZE=8> <P>
<input type="hidden" NAME="cicsweb_function" VALUE=login><P>

Please enter your user ID and password,
then press the function you wish to perform<p>
<input type="submit" name="submit" value="Store Object">
<input type="submit" name="submit" value="Delete Object">
<input type="submit" name="submit" value="List Objects">
<input type="reset">
</form>
</body></html>

B.2 CICSWEB.HTM: Login HTML Document for Use with GoServe
<!doctype html public "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>CICSWEB Administration Login</title></head>
<body>
<p>
<h1>CICSWEB Administration Login</h1>
<form action="$cicsweb" method="POST">
<p>User ID <input NAME="eci_userid" VALUE="" SIZE=8>
Password <input Type="password" NAME="eci_password" VALUE="" SIZE=8> <P>
<input type="hidden" NAME="cicsweb_function" VALUE=login><P>

Please enter your user ID and password,
then press the function you wish to perform<p>
<input type="submit" name="submit" value="Store Object">
<input type="submit" name="submit" value="Delete Object">
<input type="submit" name="submit" value="List Objects">
<input type="reset">
</form>
</body></html>
© Copyright IBM Corp. 1998 167

B.3 CICSWEB.CMD: REXX CGI Script for Use with the IBM Internet Connection
Server

/**/
/* CGI-BIN script to invoke sample CICS-WEB application examples */
/* Invokes RxECI to call specified application */
/* */
/**/
verb = value(’REQUEST_METHOD’,,’OS2ENVIRONMENT’)
/* ’@CGIUTILS -ct text/html’ */
objid = value(’PATH_INFO’,,’OS2ENVIRONMENT’) /* Object to display */
objid = substr(objid,2) /* strip leading ’/’ */
if verb = ’POST’ then do /* Only support POSTs for forms */
 /* get the incoming data */
 eciparms = charin(,,value(’CONTENT_LENGTH’,,’OS2ENVIRONMENT’))
 /* Parse input vars from form into var.x */
 call parsevar eciparms
end
else /* not a form, so assume a request to retrieve and display obj */
 return ProcessRetrieveObj(objid)

/* Check if new login attempt */
if translate(var.cicsweb_function) = ’LOGIN’ then do /* new session */
 state = startsession()
 if state \= ’’ then /* display any error message returned */
 return response(’badreq’, state)
end /* LOGIN */
else do /* Check that we have a valid current session */
 session = checksession()
 if session \= ’’ then /* display any error message returned */
 return response(’badreq’, session)
end /* check session status */

/* Check if processing an incoming form, or a request for a new form */
/* - each form has a hidden field (cicsweb_function) with a value that*/
/* can be checked against the SUBMIT function the user has selected */
/* If the user presses ENTER, default to process as if SUBMIT button*/
/* for the form was clicked. */
if var.submit = ’’ then /* User has pressed ENTER */
 var.submit = var.cicsweb_function
if var.submit \= var.cicsweb_function then do /* request new form */
 /* Now build the document for requested function and send to user */
 select
 when var.submit = "Store Object" then
 return BuildStoreObj(’’)
 when var.submit = "List Objects" then
 return BuildListObj(’’, ’’)
 when var.submit = "Delete Object" then
 return BuildDeleteObj(’’)
 when var.submit = "QUIT" then do
 return QuitWeb(var.handle)
 end
 otherwise return response(’badreq’, ’asked for unknown form’)
 end /* select form to display */
end /* build new form */
else do /* Process input from form */
 /* Now build the document for requested function and send to user */
 select
 when var.submit = "Store Object" then
 return ProcessStoreObj()
 when var.submit = "List Objects" then
 return ProcessListObj()
 when var.submit = "Delete Object" then
 return ProcessDeleteObj()
 otherwise return response(’badreq’, ’asked for unknown form’)
 end /* Process Form Input */
end /* build new form */

return say ’We should never get here’

/**/
/* BuildDeleteObj: Form to delete object stored in CICS */
/**/
BuildDeleteObj: procedure expose var. eci.
 parse arg message
 title = ’Delete HTTP Object stored in CICS’
 function = ’Delete Object’
168 Accessing CICS Business Applications from the WWW

 if message = ’’ then /* generate default message */
 message = ’Please enter information and click button for function to perform’
 call Build_header title, function, var.handle, var.eci_userid, message
 say ’CICS Object Name<p>’
 say ’<input NAME="CW_Objid" SIZE=48 value="’||var.cw_Objid||’"><p>’
 call Build_footer
 return ’’

/**/
/* BuildListObj: Form to list objects stored in CICS */
/**/
BuildListObj: procedure expose var. eci.
 parse arg message, list
 title = ’List HTTP Objects stored in CICS’
 function = ’List Objects’
 if message = ’’ then /* generate default message */
 message = ’Please enter information and click button for function to perform’
 call Build_header title, function, var.handle, var.eci_userid, message
 say ’CICS Object Name (leave blank for all objects)<p>’
 say ’<input NAME="CW_Objkey" SIZE=48 value="’||var.cw_Objkey||’"><p>’
 if list \= ’’ then
 say list
 call Build_footer
 return ’’

/**/
/* BuildStoreObj: Form to store object in CICS */
/**/
BuildStoreObj: procedure expose var. eci.
 parse arg message
 title = ’Store HTTP Object into CICS’
 function = ’Store Object’
 if var.cw_file_name = ’’ then var.cw_file_name = extract(datadir)
 if message = ’’ then /* generate default message */
 message = ’Please enter information and click button for function to perform’
 call Build_header title, function, var.handle, var.eci_userid, message
 say ’Workstation File Name (as known on Web Server)<p>’
 say ’<input NAME="cw_file_name" SIZE=48 value="’||var.cw_file_name||’"><p>’
 say ’Object Type’
 say ’<select NAME="cw_mime_type"><p>’
 say ’ <option>application/octet-stream’
 say ’ <option>application/postscript’
 say ’ <option>application/zip’
 say ’ <option>audio/basic’
 say ’ <option>audio/x-wav’
 say ’ <option>audio/x-midi’
 say ’ <option>image/gif’
 say ’ <option>image/bmp’
 say ’ <option>image/jpeg’
 say ’ <option>image/tiff’
 say ’ <option selected>text/html’
 say ’ <option>text/plain’
 say ’ <option>video/mpeg’
 say ’ <option>video/x-msvideo’
 say ’</select><p>’
 say ’CICS Object Name<p>’
 say ’<input NAME="CW_Objid" SIZE=48 value="’||var.cw_Objid||’"><p>’
 say ’Object Description ’
 say ’<input NAME="CW_Objdesc" SIZE=30 value="’||var.cw_Objdesc||’"><p>’
 call Build_footer
 return ’’

/**/
/* Build_Header: Build document and form header for html document */
/**/
Build_Header: procedure
 parse arg title, function, handle, userid, message
 /* Call CGIUTILS to build HTML Header */
 ’@cgiutils -ct text/html’
 say ’<!doctype html public "-//IETF//DTD HTML 2.0//EN">’
 say ’<html><head>’
 say ’<title>’title’</title></head>’
 say ’<body>’
 say ’<p>’
 say ’<h1>’title’</h1>’
 say ’<hr>’message’<hr>’
 say ’<form action="/cgi-bin/cicsweb" method="POST">’
 say ’<input type="hidden" NAME="cicsweb_function" VALUE="’||function||’">’
CICSWEB Source Listings 169

 say ’<input type="hidden" NAME="handle" VALUE="’||handle||’">’
 say ’<input type="hidden" NAME="eci_userid" VALUE="’||userid||’">’
 return ’’

/**/
/* Build_Footer: Build document and form footer for html document */
/**/
Build_Footer: procedure
 say ’<input type="submit" name="submit" value="Store Object">’
 say ’<input type="submit" name="submit" value="Delete Object">’
 say ’<input type="submit" name="submit" value="List Objects">’
 say ’<input type="reset">’
 say ’<input type="submit" name="submit" value="QUIT">’
 say ’</form></body></html>’
 return ’’

/**/
/* ECIMSGTEXT: Display Error Message from ECI Call */
/* e.g. variable eci_userid placed in var.eci_userid */
/**/
ecimsgtext: procedure expose ECI.
 msgfile = "c:\ca31\rxcics\rxeci.msg"
 msgtext = ’Unknown ECI return code’
 do until lines(msgfile) = 0
 line = linein(msgfile)
 parse var line returncode message
 if ECI.return_code = returncode then msgtext = message
 end
 rc = lineout(msgfile) /* close file */
 return msgtext

/**/
/* PARSEVAR: Extract variables from form */
/* e.g. variable eci_userid placed in var.eci_userid */
/**/
parsevar: procedure expose var.
 /* set VAR.x variables from the incoming data stream */
 parse arg data
 VAR.=’’ /* null string unless set */
 data=data’&’ /* set end condition */
 do until data=’’ /* each value */
 parse var data assign ’&’ data /* split off name=value */
 parse var assign name ’=’ value /* separate */
 value=translate(value, ’ ’, ’2b090a0d’x) /* handle ’+’, tabs, and CRLF */
 name=translate(packur(name)) /* caseless name */
 var.name=packur(value) /* set, after URI decoding */
 /* say name ’is’ value */
 end
 return ’’

/**/
/* ProcessDeleteObj: Process Form to delete object stored in CICS */
/**/
ProcessDeleteObj: procedure expose var. eci.
 if var.cw_objid = ’’ then
 return BuildDeleteObj(’Please specify the name of the object you wish to delete’)

 /* register RxECI functions */
 rc = rxfuncdrop(’ECI’)
 If rxfuncquery(’ECI’) Then Do
 If rxfuncadd(’ECI’, ’RXECI’, ’RxECI’) Then
 return BuildDeleteObj(’Error initializing RxECI’)
 End

 /* Initialize ECI call parameters */
 eci.userid = var.eci_userid
 eci.password = var.eci_password
 eci.program_name = ’CWSERVER’
 eci.extend_mode = "ECI_NO_EXTEND" /* Only one call to ECI in LUW */

 /* Perform ECI call to delete object */
 var.eci_commarea = left(var.submit,16)||, /* Function */
 ’CWFILE ’||, /* CICS File Name */
 left(var.cw_objid,64)||, /* Object ID in CICS */
 ’001’||, /* Segment Seq No */
 copies(’ ’,80)||, /* Return msg text */
 copies(’00’x,82) /* Pad out COMMAREA header */
170 Accessing CICS Business Applications from the WWW

 /* Call the program via ECI */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code \= 0 then
 return BuildDeleteObj(’ECI Error. RC =’eci.return_code EciMsgText() ECI.abend_code)
 else /* Display message returned from CWSERVER */
 return BuildDeleteObj(substr(var.eci_commarea,92,80))

/**/
/* ProcessListObj: Process Form to list objects stored in CICS */
/**/
ProcessListObj: procedure expose var. eci.
 /* register RxECI functions */
 If rxfuncquery(’ECI’) Then Do
 If rxfuncadd(’ECI’, ’RXECI’, ’RxECI’) Then
 return BuildListObj(’Error initializing RxECI’)
 End

 /* Initialize ECI call parameters */
 eci.userid = var.eci_userid
 eci.password = var.eci_password
 eci.program_name = ’CWLIST’
 eci.extend_mode = "ECI_NO_EXTEND" /* Only one call to ECI in LUW */

 /* Perform ECI call to list objects */
 var.eci_commarea = left(var.submit,16)||, /* Function */
 ’CWFILE ’||, /* CICS File Name */
 left(var.cw_objkey,64)||, /* Object ID in CICS */
 ’001’||, /* Segment Seq No */
 copies(’ ’,80)||, /* Return msg text */
 copies(’ ’,30)||, /* Obj MIME type */
 right(length(var.cw_objkey),2,’0’)||, /* Length of generic key */
 ’00008’||, /* Length of data following */
 ’cicsweb/’||, /* Prepend string for anchor href */
 copies(’00’x,31992) /* Pad out COMMAREA */

 /* Call the program via ECI */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code \= 0 then
 return BuildListObj(’ECI Error. RC =’eci.return_code EciMsgText() ECI.abend_code, ’’)
 else do /* Display message returned from CWSERVER */
 listtxt = substr(var.eci_commarea,209,substr(var.eci_commarea,204,5))
 return BuildListObj(substr(var.eci_commarea,92,80),listtxt)
 end

/**/
/* ProcessRetrieveObj: Process Browser Retrieve Request */
/**/
ProcessRetrieveObj: procedure expose var. eci.
 parse arg objid
 /* register RxECI functions */
 If rxfuncquery(’ECI’) Then Do
 If rxfuncadd(’ECI’, ’RXECI’, ’RxECI’) Then
 return response(’badreq’,’Error initializing RxECI’)
 End

 /* Initialize ECI call parameters */
 /* Need to specify userid and password since not passed from form */
 eci.userid = ’DEFAULT’
 eci.password = ’DEFAULT’
 eci.program_name = ’CWSERVER’
 eci.extend_mode = "ECI_NO_EXTEND" /* Read-only, so each call is LUW */

 /* Perform ECI call to get first or only segment of object */
 segsize = 8000 /* Object will be passed in segments of this size */
 var.eci_commarea = left(’Retrieve Object’,16)||, /* Function */
 ’CWFILE ’||, /* CICS File Name */
 left(objid,64)||, /* Object ID in CICS */
 ’001’||, /* Segment Seq No */
 copies(’ ’,80)||, /* Return msg text */
 copies(’ ’,30)||, /* Obj MIME type */
 ’000’||, /* No. of Segments */
 ’0000000’||, /* Total Obj Size */
 ’00000’||, /* this segment size */
 copies(’ ’,30)||, /* Object Description */
 copies(’00’x,segsize) /* Object Data */

 /* Call the program via ECI */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
CICSWEB Source Listings 171

 if eci.return_code \= 0 then do
 msg = ’resulted in ECI Error. RC =’eci.return_code EciMsgText() ECI.abend_code
 return response(’badreq’, msg)
 end
 if substr(var.eci_commarea,92,80) \= ’ ’then do /* Error msg returned */
 return response(’badreq’,’resulted in ’substr(var.eci_commarea,92,80))
 end

 /* Extract what we need from commarea */
 mimetype = substr(var.eci_commarea,172,30)
 segments = substr(var.eci_commarea,202,3)
 seglength = substr(var.eci_commarea,212,5) /* length of this seg */
 objdata = substr(var.eci_commarea,247,seglength)
 objsize = substr(var.eci_commarea,205,7)
 /* Call CGIUTILS to build HTML Header */
 ’@cgiutils -ct ’mimetype ’-length ’ objsize
 /* If only one segment, return it immediately */
 if segments = 1 then do
 rc = charout(,objdata) /* Send the data */
 return ’’
 end
 else do /* return first seg, then go retrieve rest */
 rc = charout(,objdata) /* Send first segment */
 do i = 2 to segments /* loop to get remaining segments */
 var.eci_commarea = left(’Retrieve Object’,16)||, /* Function */
 ’CWFILE ’||, /* CICS File Name */
 left(objid,64)||, /* Object ID in CICS */
 right(i,3,’0’)||, /* Segment Seq No */
 copies(’ ’,80)||, /* Return msg text */
 copies(’ ’,30)||, /* Obj MIME type */
 ’000’||, /* No. of Segments */
 ’0000000’||, /* Total Obj Size */
 ’00000’||, /* this segment size */
 copies(’ ’,30)||, /* Object Description */
 copies(’00’x,segsize) /* Object Data */

 /* Call the program via ECI */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code \= 0 then do /* attempt to send msg and quit */
 say ’<p>Request resulted in ECI Error. RC =’
 say msg||eci.return_code EciMsgText() ECI.abend_code’<p>’
 return ’’ /* bail out */
 end
 if substr(var.eci_commarea,92,80) \= ’ ’then do /* Error msg returned */
 say ’<p>Request returned error message’ substr(var.eci_commarea,92,80)’<p>’
 return ’’ /* bail out */
 end
 /* Extract what we need from commarea */
 mimetype = substr(var.eci_commarea,172,30)
 seglength = substr(var.eci_commarea,212,5)
 objdata = substr(var.eci_commarea,247,seglength)
 rc = charout(,objdata) /* Send this segment */
 end
 return ’’
 end

/**/
/* ProcessStoreObj: Process Form to store object in CICS */
/**/
ProcessStoreObj: procedure expose var. eci.
 /* check if specified file exists and contains data */
 if stream(var.cw_file_name,’c’,’query exists’) = ’’ then
 return BuildStoreObj(’File ’var.cw_file_name’ does not exist’)
 objlength = stream(var.cw_file_name, ’c’, ’query size’)
 if objlength = 0 thendo
 msg = ’ ’var.cw_file_name’ contains no data. Request not processed’
 return BuildStoreObj(msg)
 end
 if var.cw_objid = ’’ then do
 parse var var.cw_file_name . ’:’ var.cw_objid /* strip drive letter */
 if var.cw_objid = ’’ then var.cw_objid = var.cw_file_name
 msg = ’Verify CICS object name and click Store Object’
 return BuildStoreObj(msg)
 end
 if var.cw_objdesc = ’’ then do
 return BuildStoreObj(’Please provide a Description of the object’)
 end
172 Accessing CICS Business Applications from the WWW

 /* Get the object contents */
 objdata = charin(var.cw_file_name,1,objlength)

 /* register RxECI functions */
 /* rc = rxfuncdrop(’ECI’) */
 If rxfuncquery(’ECI’) Then Do
 If rxfuncadd(’ECI’, ’RXECI’, ’RxECI’) Then
 return BuildStoreObj(’Error initializing RxECI’)
 End

 /* Initialize ECI call parameters */
 eci.userid = var.eci_userid
 eci.password = var.eci_password
 eci.program_name = ’CWSERVER’
 eci.extend_mode = "ECI_EXTENDED" /* Multiple calls in LUW */

 /* Determine how many times we need to call ECI to pass the data */
 segsize = 8000 /* Object will be passed in segments of this size */
 segments = ((objlength-1) % segsize) + 1
 /* loop to send segments to CICS */
 do i = 1 to segments
 /* Build the COMMAREA */
 if i = segments then do
 seglength = (objlength // segsize)
/* eci.extend_mode = "ECI_NO_EXTEND"*/ /* This is last call in LUW */
 end
 else seglength = segsize /* length of segment for this call */
 var.eci_commarea = left(var.submit,16)||, /* Function */
 ’CWFILE ’||, /* CICS File Name */
 left(var.cw_objid,64)||, /* Object ID in CICS */
 right(i,3,’0’)||, /* Segment Seq No */
 copies(’ ’,80)||, /* Return msg text */
 left(var.cw_mime_type,30)||, /* Obj MIME type */
 right(segments,3,’0’)||, /* No. of Segments */
 right(objlength,7,’0’)||, /* Total Obj Size */
 right(seglength,5,’0’)||, /* this segment size */
 left(var.cw_objdesc,30)||, /* Obj Description */
 substr(objdata,(i-1)*segsize+1,segsize,’00’x)
 /* Object Data */

 /* Call the program via ECI */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code \= 0 then
 return BuildStoreObj(’ECI Error. RC =’eci.return_code EciMsgText() ECI.abend_code)
 end
 /* Commit LUW. Separate call reqd when using ECI direct on CICS */
 /* OS/2 Server. Normally simply changing extend_mode to */
 /* ECI_NO_EXTEND on last call should be sufficient to commit LUW */
 eci.program_name = ’’
 eci.extend_mode = "ECI_COMMIT" /* End LUW */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code \= 0 then
 return BuildStoreObj(’ECI Error. RC =’eci.return_code EciMsgText() ECI.abend_code)
 return BuildStoreObj(substr(var.eci_commarea,92,80))

/**/
/* QuitWeb: Delete State File and Return to Login Screen */
/**/
QuitWeb: procedure
 parse arg handle
 port = extract(’serverport’)
 ’@del tmp\CW’||handle||’.’||port
 ’@cgiutils -ct text/html -status 302 -uri cicsweb.html -noel’
 if port = 80 then port = ’’
 else port = ’:’||port
 say ’Location: http://’extract(serveraddr)||port’/cicsweb.html’
 say ’’
 return ’’

/**/
/* STARTSESSION: build server session-state file */
/**/
startsession: procedure expose var. eci.
 if (var.eci_userid = ’’) | (var.eci_password = ’’) then
 return ’needs to include user ID and password’
 var.handle = extract(transaction) /* Save for later use */
 /* generate new state file name */
 statefile = ’tmp/CW’||var.handle’.’extract(serverport)
CICSWEB Source Listings 173

 call lineout statefile, var.eci_userid, 1 /* userid to state file */
 call lineout statefile, var.eci_password /* pw to state file */
 return ’’

/**/
/* CHECKSESSION: validate request against existing state file */
/* Checks that userid in state file matches userid sent from form */
/**/
checksession: procedure expose var. eci.
 /* generate state file name */
 statefile = ’tmp/CW’||var.handle’.’extract(serverport)
 if stream(statefile, ’c’, ’query exists’) = ’’ then /* Not found */
 return ’No current session exists. Please login’
 if linein(statefile, 1) \= var.eci_userid then
 return "We don’t have a record of your user id. Please login again"
 var.eci_password = linein(statefile) /* get pw from state file */
 rc = stream(statefile, ’c’, ’close’) /* Close the state file */
 return ’’

/**/
/* The following functions are designed to be compatible with GoServe */
/* functions, and have been written to facilitate porting GoServe */
/* filters to use the cgi-bin interface. */
/**/

/**/
/* Clientname: Return server name (modelled after GoServe) */
/**/
Clientname: procedure
 return value(’REMOTE_HOST’,,’OS2ENVIRONMENT’)

/**/
/* Extract: Return value of various settings */
/**/
extract: procedure
 parse upper arg var
 select
 when var = "DATADIR" then
 return ’C:\WWW\HTML\’
 when var = "CLIENTADDR" then
 return value(’REMOTE_ADDR’,,’OS2ENVIRONMENT’)
 when var = "SERVERADDR" then
 return value(’SERVER_NAME’,,’OS2ENVIRONMENT’)
 when var = "SERVERPORT" then
 return value(’SERVER_PORT’,,’OS2ENVIRONMENT’)
 when var = "SERVERPROTOCOL" then
 return value(’SERVER_PROTOCOL’,,’OS2ENVIRONMENT’)
 when var = "SERVERSOFTWARE" then
 return value(’SERVER_SOFTWARE’,,’OS2ENVIRONMENT’)
 when var = "TRANSACTION" then do /* get a session handle */
 /* return a quasi-unique number for building a session handle */
 statefile = ’cwhandle.seq’
 handle = 1
 if stream(statefile, ’c’, ’query exists’) = ’’ then /* Not found*/
 call lineout statefile, ’1’, 1 /* Initialise file */
 else do /* Increment handle sequence number */
 handle = linein(statefile, 1) + 1
 call lineout statefile, handle, 1 /* Update file */
 end
 rc = stream(statefile, ’c’, ’close’) /* Close the seq. file */
 return handle
 end
 otherwise return ’UNKNOWN’
 end

/**/
/* Packur: */
/* This procedure takes an input string, and converts characters */
/* encoded as escape sequences (e.g. %xx) back to the character that */
/* they represent. */
/**/
packur: procedure
 parse arg outstring ’%’ rest
 do while length(rest) > 1
 outstring = outstring||x2c(substr(rest,1,2)) /* decode value */
 rest = substr(rest,3)
 parse var rest next ’%’ rest
 outstring = outstring||next
174 Accessing CICS Business Applications from the WWW

 end
 return outstring

/**/
/* Response: Send an error response to client */
/**/
response: procedure
 parse arg request, message
 select
 when request=’badreq’ then use=’400 Bad Request Syntax’
 when request=’notfound’ then use=’404 Not found’
 when request=’forbid’ then use=’403 Forbidden’
 when request=’unauth’ then use=’401 Unauthorized’
 end /* Add others to this list as needed */
 /* Now set the response and build the response file */
 parse var use code text
 ’@cgiutils -ct text/html -status ’ code
 say ’<!doctype html public "-//IETF//DTD HTML 2.0//EN">’
 say "<html><head><title>"text"</title></head>"
 say "<body><h2>Sorry...</h2>"
 say "<p>The request from your Web client" message"."
 say "<hr>HTTP response code:" code ’[’text’]’
 say "
From server at:" servername()
 say "
Running:" server()
 say "</body></html>"
 return ’’ /* [called as function] */

/**/
/* Servername: Return server name (modelled after GoServe) */
/**/
Servername: procedure
 return value(’SERVER_NAME’,,’OS2ENVIRONMENT’)

/**/
/* Server: Return server software (modelled after GoServe) */
/**/
Server: procedure
 return value(’SERVER_SOFTWARE’,,’OS2ENVIRONMENT’)
CICSWEB Source Listings 175

B.4 CICSWEB.80: REXX Filter for Use with GoServe
/**/
/* GoServe filter to invoke sample CICS-WEB application examples */
/* Invokes RxECI to call specified application */
/* */
/* Arguments: */
/* verb - how called (only POST supported) */
/* objid - selector after cgi-bin/cicsweb/ stripped from front */
/* (for retrieval, identifies object to retrieve) */
/**/
parse arg verb, objid
if verb = ’POST’ then do /* Only support POSTs for forms */
 ’read body var formparms’ /* get the incoming data */
 if rc=-4 then /* body too large */
 return response(’badreq’, ’sent too much data’)
 if rc<>0 then /* e.g., invalid HTTP header */
 return response(’badreq’, ’sent data that could not be read’)
 /* Parse input vars from form into var.x */
 call parsevar(formparms)
end
else /* not a form, so assume a request to retrieve and display obj */
 return ProcessRetrieveObj(objid)

/* Check if new login attempt */
if translate(var.cicsweb_function) = ’LOGIN’ then do /* new session */
 state = startsession()
 if state \= ’’ then /* display any error message returned */
 return response(’badreq’, state)
end /* LOGIN */
else do /* Check that we have a valid current session */
 session = checksession()
 if session \= ’’ then /* display any error message returned */
 return response(’badreq’, session)
end /* check session status */

/* Check if processing an incoming form, or a request for a new form */
/* - each form has a hidden field (cicsweb_function) with a value that*/
/* can be checked against the SUBMIT function the user has selected */
/* If the user presses ENTER, default to process as if SUBMIT button*/
/* for the form was clicked. */
if var.submit = ’’ then /* User has pressed ENTER */
 var.submit = var.cicsweb_function
if var.submit \= var.cicsweb_function then do /* request new form */
 /* Now build the document for requested function and send to user */
 select
 when var.submit = "Store Object" then
 return BuildStoreObj(’’)
 when var.submit = "List Objects" then
 return BuildListObj(’’, ’’)
 when var.submit = "Delete Object" then
 return BuildDeleteObj(’’)
 when var.submit = "QUIT" then do
 return QuitWeb(var.handle)
 end
 otherwise return response(’badreq’, ’asked for unknown form’)
 end /* select form to display */
end /* build new form */
else do /* Process input from form */
 /* Now build the document for requested function and send to user */
 select
 when var.submit = "Store Object" then
 return ProcessStoreObj()
 when var.submit = "List Objects" then
 return ProcessListObj()
 when var.submit = "Delete Object" then
 return ProcessDeleteObj()
 otherwise return response(’badreq’, ’asked for unknown form’)
 end /* Process Form Input */
end /* build new form */

return say ’We should never get here’

/**/
/* BuildDeleteObj: Form to delete object stored in CICS */
/**/
BuildDeleteObj: procedure expose var. eci.
176 Accessing CICS Business Applications from the WWW

parse arg message
title = ’Delete HTTP Object stored in CICS’
function = ’Delete Object’
if message = ’’ then /* generate default message */
 message = ’Please enter information and click button for function to perform’
crlf=’0d0a’x
html = ’’
html = Build_header(html, title, function, var.handle, var.eci_userid, message)
html = html||’CICS Object Name<p>’crlf
html = html||’<input NAME="CW_Objid" SIZE=48 value="’||var.cw_Objid||’"><p>’crlf
html = Build_footer(html)
’VAR TYPE text/html AS DELOBJ NAME html’
return ’’

/**/
/* BuildListObj: Form to list objects stored in CICS */
/**/
BuildListObj: procedure expose var. eci.
parse arg message, list
title = ’List HTTP Objects stored in CICS’
function = ’List Objects’
if message = ’’ then /* generate default message */
 message = ’Please enter information and click button for function to perform’
crlf=’0d0a’x
html = ’’
html = Build_header(html, title, function, var.handle, var.eci_userid, message)
html = html||’CICS Object Name (leave blank for all objects)<p>’crlf
html = html||’<input NAME="CW_Objkey" SIZE=48 value="’||var.cw_Objkey||’"><p>’crlf
if list \= ’’ then
 html = html||list
html = Build_footer(html)
’VAR TYPE text/html AS LISTOBJ NAME html’
return ’’

/**/
/* BuildStoreObj: Form to store object in CICS */
/**/
BuildStoreObj: procedure expose var. eci.
parse arg message
title = ’Store HTTP Object into CICS’
function = ’Store Object’
if var.cw_file_name = ’’ then var.cw_file_name = extract(datadir)
if message = ’’ then /* generate default message */
 message = ’Please enter information and click button for function to perform’
crlf=’0d0a’x
html = ’’
html = Build_header(html, title, function, var.handle, var.eci_userid, message)
html = html||’Workstation File Name (as known on Web Server)<p>’crlf
html = html||’<input NAME="cw_file_name" SIZE=48 value="’||var.cw_file_name||’"><p>’crlf
html = html||’Object Type’crlf
html = html||’<select NAME="cw_mime_type"><p>’crlf
html = html||’ <option>application/octet-stream’crlf
html = html||’ <option>application/postscript’crlf
html = html||’ <option>application/zip’crlf
html = html||’ <option>audio/basic’crlf
html = html||’ <option>audio/x-wav’crlf
html = html||’ <option>audio/x-midi’crlf
html = html||’ <option>image/gif’crlf
html = html||’ <option>image/bmp’crlf
html = html||’ <option>image/jpeg’crlf
html = html||’ <option>image/tiff’crlf
html = html||’ <option selected>text/html’crlf
html = html||’ <option>text/plain’crlf
html = html||’ <option>video/mpeg’crlf
html = html||’ <option>video/x-msvideo’crlf
html = html||’</select><p>’crlf
html = html||’CICS Object Name<p>’crlf
html = html||’<input NAME="CW_Objid" SIZE=48 value="’||var.cw_Objid||’"><p>’crlf
html = html||’Object Description ’crlf
html = html||’<input NAME="CW_Objdesc" SIZE=30 value="’||var.cw_Objdesc||’"><p>’crlf
html = Build_footer(html)
’VAR TYPE text/html AS STOROBJ NAME html’
return ’’

/**/
/* Build_Header: Build document and form header for html document */
/**/
Build_Header: procedure
CICSWEB Source Listings 177

parse arg html, title, function, handle, userid, message
crlf=’0d0a’x
html = html||’<!doctype html public "-//IETF//DTD HTML 2.0//EN">’crlf
html = html||’<html><head>’crlf
html = html||’<title>’title’</title></head>’crlf
html = html||’<body>’crlf
html = html||’<p>’crlf
html = html||’<h1>’title’</h1>’crlf
html = html||’<hr>’message’<hr>’crlf
html = html||’<form action="$cicsweb" method="POST">’crlf
html = html||’<input type="hidden" NAME="cicsweb_function" VALUE="’||function||’">’crlf
html = html||’<input type="hidden" NAME="handle" VALUE="’||handle||’">’crlf
html = html||’<input type="hidden" NAME="eci_userid" VALUE="’||userid||’">’crlf
return html

/**/
/* Build_Footer: Build document and form footer for html document */
/**/
Build_Footer: procedure
parse arg html
crlf=’0d0a’x
html = html||’<input type="submit" name="submit" value="Store Object">’crlf
html = html||’<input type="submit" name="submit" value="Delete Object">’crlf
html = html||’<input type="submit" name="submit" value="List Objects">’crlf
html = html||’<input type="reset">’crlf
html = html||’<input type="submit" name="submit" value="QUIT">’crlf
html = html||’</form></body></html>’crlf
return html

/**/
/* ECIMSGTEXT: Display Error Message from ECI Call */
/* e.g. variable eci_userid placed in var.eci_userid */
/**/
ecimsgtext: procedure expose ECI.
 msgfile = "c:\ca31\rxcics\rxeci.msg"
 msgtext = ’Unknown ECI return code’
 do until lines(msgfile) = 0
 line = linein(msgfile)
 parse var line returncode message
 if ECI.return_code = returncode then msgtext = message
 end
 rc = lineout(msgfile) /* close file */
return msgtext

/**/
/* PARSEVAR: Extract variables from form */
/* e.g. variable eci_userid placed in var.eci_userid */
/**/
parsevar: procedure expose var.
 /* set VAR.x variables from the incoming data stream */
 parse arg data
 VAR.=’’ /* null string unless set */
 data=data’&’ /* set end condition */
 do until data=’’ /* each value */
 parse var data assign ’&’ data /* split off name=value */
 parse var assign name ’=’ value /* separate */
 value=translate(value, ’ ’, ’2b090a0d’x) /* handle ’+’, tabs, and CRLF */
 name=translate(packur(name)) /* caseless name */
 var.name=packur(value) /* set, after URI decoding */
 /* say name ’is’ value */
 end
 return ’’

/**/
/* ProcessDeleteObj: Process Form to delete object stored in CICS */
/**/
ProcessDeleteObj: procedure expose var. eci.
 if var.cw_objid = ’’ then
 return BuildDeleteObj(’Please specify the name of the object you wish to delete’)

 /* register RxECI functions */
 rc = rxfuncdrop(’ECI’)
 If rxfuncquery(’ECI’) Then Do
 If rxfuncadd(’ECI’, ’RXECI’, ’RxECI’) Then
 return BuildDeleteObj(’Error initializing RxECI’)
 End

 /* Initialize ECI call parameters */
178 Accessing CICS Business Applications from the WWW

 eci.userid = var.eci_userid
 eci.password = var.eci_password
 eci.program_name = ’CWSERVER’
 eci.extend_mode = "ECI_NO_EXTEND" /* Only one call to ECI in LUW */

 /* Perform ECI call to delete object */
 var.eci_commarea = left(var.submit,16)||, /* Function */
 ’CWFILE ’||, /* CICS File Name */
 left(var.cw_objid,64)||, /* Object ID in CICS */
 ’001’||, /* Segment Seq No */
 copies(’ ’,80)||, /* Return msg text */
 copies(’00’x,82) /* Pad out COMMAREA header */

 /* Call the program via ECI */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code \= 0 then
 return BuildDeleteObj(’ECI Error. RC =’eci.return_code EciMsgText() ECI.abend_code)
 else /* Display message returned from CWSERVER */
 return BuildDeleteObj(substr(var.eci_commarea,92,80))

/**/
/* ProcessListObj: Process Form to list objects stored in CICS */
/**/
ProcessListObj: procedure expose var. eci.
 /* register RxECI functions */
 If rxfuncquery(’ECI’) Then Do
 If rxfuncadd(’ECI’, ’RXECI’, ’RxECI’) Then
 return BuildListObj(’Error initializing RxECI’)
 End

 /* Initialize ECI call parameters */
 eci.userid = var.eci_userid
 eci.password = var.eci_password
 eci.program_name = ’CWLIST’
 eci.extend_mode = "ECI_NO_EXTEND" /* Only one call to ECI in LUW */

 /* Perform ECI call to list objects */
 var.eci_commarea = left(var.submit,16)||, /* Function */
 ’CWFILE ’||, /* CICS File Name */
 left(var.cw_objkey,64)||, /* Object ID in CICS */
 ’001’||, /* Segment Seq No */
 copies(’ ’,80)||, /* Return msg text */
 copies(’ ’,30)||, /* Obj MIME type */
 right(length(var.cw_objkey),2,’0’)||, /* Length of generic key */
 ’00009’||, /* Length of data following */
 ’$cicsweb/’||,/* string to prepend to <a href="..*/
 copies(’00’x,31991) /* Pad out COMMAREA */

 /* Call the program via ECI */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code \= 0 then
 return BuildListObj(’ECI Error. RC =’eci.return_code EciMsgText() ECI.abend_code, ’’)
 else do /* Display message returned from CWSERVER */
 listtxt = substr(var.eci_commarea,209,substr(var.eci_commarea,204,5))
 return BuildListObj(substr(var.eci_commarea,92,80),listtxt)
 end

/**/
/* ProcessRetrieveObj: Process Browser Retrieve Request */
/**/
ProcessRetrieveObj: procedure expose var. eci.
 parse arg objid
 /* register RxECI functions */
 If rxfuncquery(’ECI’) Then Do
 If rxfuncadd(’ECI’, ’RXECI’, ’RxECI’) Then
 return response(’badreq’,’Error initializing RxECI’)
 End

 /* Initialize ECI call parameters */
 /* Need to specify userid and password since not passed from form */
 eci.userid = ’DEFAULT’
 eci.password = ’DEFAULT’
 eci.program_name = ’CWSERVER’
 eci.extend_mode = "ECI_NO_EXTEND" /* Read-only, so each call is LUW */

 /* Perform ECI call to get first or only segment of object */
 segsize = 8000 /* Object will be passed in segments of this size */
 var.eci_commarea = left(’Retrieve Object’,16)||, /* Function */
CICSWEB Source Listings 179

 ’CWFILE ’||, /* CICS File Name */
 left(objid,64)||, /* Object ID in CICS */
 ’001’||, /* Segment Seq No */
 copies(’ ’,80)||, /* Return msg text */
 copies(’ ’,30)||, /* Obj MIME type */
 ’000’||, /* No. of Segments */
 ’0000000’||, /* Total Obj Size */
 ’00000’||, /* this segment size */
 copies(’ ’,30)||, /* Object Description */
 copies(’00’x,segsize) /* Object Data */

 /* Call the program via ECI */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code \= 0 then do
 msg = ’resulted in ECI Error. RC =’eci.return_code EciMsgText() ECI.abend_code
 return response(’badreq’, msg)
 end
 if substr(var.eci_commarea,92,80) \= ’ ’then do /* Error msg returned */
 return response(’badreq’,’resulted in ’substr(var.eci_commarea,92,80))
 end

 /* Extract what we need from commarea */
 mimetype = substr(var.eci_commarea,172,30)
 segments = substr(var.eci_commarea,202,3)
 seglength = substr(var.eci_commarea,212,5) /* length of this seg */
 objdata = substr(var.eci_commarea,247,seglength)
 /* If only one segment, return it immediately */
 if segments = 1 then do
 ’VAR TYPE ’mimetype’ AS CWRetrieve NAME objdata’
 return ’’
 end
 else do /* return first seg, then go retrieve rest */
 ’SEND TYPE ’mimetype’ AS CWRetrieve’ /* start output */
 ’var name objdata’ /* Send first segment */
 do i = 2 to segments /* loop to get remaining segments */
 var.eci_commarea = left(’Retrieve Object’,16)||, /* Function */
 ’CWFILE ’||, /* CICS File Name */
 left(objid,64)||, /* Object ID in CICS */
 right(i,3,’0’)||, /* Segment Seq No */
 copies(’ ’,80)||, /* Return msg text */
 copies(’ ’,30)||, /* Obj MIME type */
 ’000’||, /* No. of Segments */
 ’0000000’||, /* Total Obj Size */
 ’00000’||, /* this segment size */
 copies(’ ’,30)||, /* Object Description */
 copies(’00’x,segsize) /* Object Data */

 /* Call the program via ECI */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code \= 0 then do /* attempt to send msg and quit */
 msg = ’Request resulted in ECI Error. RC =’
 ’STRING’ msg||eci.return_code EciMsgText() ECI.abend_code
 ’SEND COMPLETE’ /* Signal all data sent */
 return ’’ /* bail out */
 end
 if substr(var.eci_commarea,92,80) \= ’ ’then do /* Error msg returned */
 ’STRING Request returned error message’ substr(var.eci_commarea,92,80)
 ’SEND COMPLETE’ /* Signal all data sent */
 return ’’ /* bail out */
 end
 /* Extract what we need from commarea */
 mimetype = substr(var.eci_commarea,172,30)
 seglength = substr(var.eci_commarea,212,5)
 objdata = substr(var.eci_commarea,247,seglength)
 ’VAR NAME objdata’ /* Send this segment */
 end
 ’SEND COMPLETE’ /* Signal all data sent */
 return ’’
 end

/**/
/* ProcessStoreObj: Process Form to store object in CICS */
/**/
ProcessStoreObj: procedure expose var. eci.
 /* check if specified file exists and contains data */
 if stream(var.cw_file_name,’c’,’query exists’) = ’’ then
 return BuildStoreObj(’File ’var.cw_file_name’ does not exist’)
 objlength = stream(var.cw_file_name, ’c’, ’query size’)
180 Accessing CICS Business Applications from the WWW

 if objlength = 0 then do
 msg = ’ ’var.cw_file_name’ contains no data. Request not processed’
 return BuildStoreObj(msg)
 end
 if var.cw_objid = ’’ then do
 parse var var.cw_file_name . ’:’ var.cw_objid /* strip drive letter */
 if var.cw_objid = ’’ then var.cw_objid = var.cw_file_name
 return BuildStoreObj(’Verify CICS object name and click Store Object’)
 end
 if var.cw_objdesc = ’’ then do
 return BuildStoreObj(’Please provide a Description of the object’)
 end

 /* Get the object contents */
 objdata = charin(var.cw_file_name,1,objlength)

 /* register RxECI functions */
 /* rc = rxfuncdrop(’ECI’) */
 If rxfuncquery(’ECI’) Then Do
 If rxfuncadd(’ECI’, ’RXECI’, ’RxECI’) Then
 return BuildStoreObj(’Error initializing RxECI’)
 End

 /* Initialize ECI call parameters */
 eci.userid = var.eci_userid
 eci.password = var.eci_password
 eci.program_name = ’CWSERVER’
 eci.extend_mode = "ECI_EXTENDED" /* Multiple calls in LUW */

 /* Determine how many times we need to call ECI to pass the data */
 segsize = 8000 /* Object will be passed in segments of this size */
 segments = ((objlength-1) % segsize) + 1
 /* loop to send segments to CICS */
 do i = 1 to segments
 /* Build the COMMAREA */
 if i = segments then do
 seglength = (objlength // segsize)
/* eci.extend_mode = "ECI_NO_EXTEND"*/ /* This is last call in LUW */
 end
 else seglength = segsize /* length of segment for this call */
 var.eci_commarea = left(var.submit,16)||, /* Function */
 ’CWFILE ’||, /* CICS File Name */
 left(var.cw_objid,64)||, /* Object ID in CICS */
 right(i,3,’0’)||, /* Segment Seq No */
 copies(’ ’,80)||, /* Return msg text */
 left(var.cw_mime_type,30)||, /* Obj MIME type */
 right(segments,3,’0’)||, /* No. of Segments */
 right(objlength,7,’0’)||, /* Total Obj Size */
 right(seglength,5,’0’)||, /* this segment size */
 left(var.cw_objdesc,30)||, /* Obj Description */
 substr(objdata,(i-1)*segsize+1,segsize,’00’x)
 /* Object Data */

 /* Call the program via ECI */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code \= 0 then
 return BuildStoreObj(’ECI Error. RC =’eci.return_code EciMsgText() ECI.abend_code)
 end
 /* Commit LUW. Separate call reqd when using ECI direct on CICS */
 /* OS/2 Server. Normally simply changing extend_mode to */
 /* ECI_NO_EXTEND on last call should be sufficient to commit LUW */
 eci.program_name = ’’
 eci.extend_mode = "ECI_COMMIT" /* End LUW */
 var.eci_commarea = ECI(’ECI.’, var.eci_commarea)
 if eci.return_code \= 0 then
 return BuildStoreObj(’ECI Error. RC =’eci.return_code EciMsgText() ECI.abend_code)
 return BuildStoreObj(substr(var.eci_commarea,92,80))

/**/
/* QuitWeb: Delete State File and Return to Login Screen */
/**/
QuitWeb: procedure
parse arg handle
address cmd ’del tmp\CW’||handle||’.’||extract(serverport)
return ’FILE NAME ’||extract(datadir)||’cicsweb.htm’

/**/
/* RESPONSE: Standard (mostly error) responses (from GoRemote) */
CICSWEB Source Listings 181

/* */
/* Arguments are: response type and extended message information. */
/* It uses the VAR command to send message document to Web Browser */
/**/
response: procedure
 parse arg request, message
 select
 when request=’badreq’ then use=’400 Bad Request Syntax’
 when request=’notfound’ then use=’404 Not found’
 when request=’forbid’ then use=’403 Forbidden’
 when request=’unauth’ then use=’401 Unauthorized’
 end /* Add others to this list as needed */
 /* Now set the response and build the response file */
 ’RESPONSE HTTP/1.0’ use /* Set HTTP response line */
 parse var use code text
 crlf=’0d0a’x; out=’’
 out=out||’<!doctype html public "-//IETF//DTD HTML 2.0//EN">’crlf
 out=out||"<html><head><title>"text"</title></head>"crlf
 out=out||"<body><h2>Sorry...</h2>"crlf
 out=out||"<p>The request from your Web client" message"."crlf
 out=out||"<hr>HTTP response code:" code ’[’text’]’crlf
 out=out||"
From server at:" servername()crlf
 out=out||"
Running:" server()crlf
 out=out||"</body></html>"crlf
 ’VAR TYPE text/html AS Response NAME out’ /* send it */
 return ’’ /* [called as function] */

/**/
/* STARTSESSION: build server session-state file */
/**/
startsession: procedure expose var. eci.
 /* Upper case userid and PW */
 var.eci_userid = translate(var.eci_userid)
 var.eci_password = translate(var.eci_password)
 if (var.eci_userid = ’’) | (var.eci_password = ’’) then
 return ’needs to include user ID and password’
 var.handle = extract(transaction) /* Save for later use */
 /* generate new state file name */
 statefile = ’tmp/CW’||var.handle’.’extract(serverport)
 call lineout statefile, var.eci_userid, 1 /* userid to state file */
 call lineout statefile, var.eci_password /* pw to state file */
 return ’’

/**/
/* CHECKSESSION: validate request against existing state file */
/* Checks that userid in state file matches userid sent from form */
/**/
checksession: procedure expose var. eci.
 /* generate state file name */
 statefile = ’tmp/CW’||var.handle’.’extract(serverport)
 if stream(statefile, ’c’, ’query exists’) = ’’ then /* Not found */
 return ’No current session exists. Please login’
 if linein(statefile, 1) \= var.eci_userid then
 return "We don’t have a record of your user id. Please login again"
 var.eci_password = linein(statefile) /* get pw from state file */
 rc = stream(statefile, ’c’, ’close’) /* Close the state file */
 return ’’
182 Accessing CICS Business Applications from the WWW

B.5 CICS COBOL Program to Store, Retrieve, and Delete Objects
000100***
000200* CWSERVER - CICS Server program for Web Sample *
000300***
000400* CREATED 95/08/08 BY David Thrum *
000500* *
000600* COPYRIGHT - IBM *
000700* *
000800* FUNCTION - Called from Web Server via ECI *
000900* - Performs requested function: *
001000* - Store object passed in COMMAREA in VSAM file *
001100* - Delete object from VSAM file *
001300* - Retrieve object from VSAM file and return *
001400* in COMMAREA *
001500* PARAMETERS PASSED *
001600* - CICS COMMAREA *
001700* *
001710* This is an example of a program that is not "HTML-aware". *
001720* Any HTML that is required to be sent to the Web Browser *
001730* is either contained in the objects managed by this *
001740* program, or must be generated at the Web Server by the *
001750* CGI script, GoServe filter, or equivalent. *
001770* *
001800***
001900 IDENTIFICATION DIVISION.
002000 PROGRAM-ID. CWSERVER.
002100 ENVIRONMENT DIVISION.
002200 DATA DIVISION.
002300*
002400 WORKING-STORAGE SECTION.
002500*
002600* MISCELLANEOUS WORK AREAS/CONSTANTS
002700*
002800 77 WS-LOW-VALUES PIC X VALUE LOW-VALUES.
002830 77 CW-RECLEN PIC S9(4) COMP.
002900*
003000* Text for messages
003100*
003200 01 CW-MESSAGES.
003300 05 CW-MSG-PTR PIC 9(4) COMP VALUE 1.
003400 05 CW-MSG-INVALID-FUNCTION PIC X(30)
003500 VALUE ’is an invalid function request’.
003510 05 CW-MSG-STORE-SUCCESSFUL PIC X(20)
003520 VALUE ’ stored successfully’.
003521 05 CW-MSG-DELETE-SUCCESSFUL PIC X(21)
003522 VALUE ’ deleted successfully’.
003523 05 CW-MSG-NOTFOUND PIC X(14)
003524 VALUE ’ was not found’.
003530 05 CW-MSG-CICS-ERROR.
003550 10 FILLER PIC X(22) VALUE ’Unexpected return code’.
003560 10 CW-MSG-EIBRESP PIC 9(2).
003570 10 FILLER PIC X(4) VALUE ’ on ’.
003580 10 CW-MSG-FUNCTION PIC X(10).
003590 10 FILLER PIC X(1) VALUE ’ ’.
003591 10 CW-MSG-EIBRSRCE PIC X(8).
003600*
003700 LINKAGE SECTION.
003800 01 DFHCOMMAREA PIC X(9000).
003900*
004000* LAYOUT FOR COMMMAREA
004100*
004200 01 CW-COMMAREA REDEFINES DFHCOMMAREA.
004300 05 CW-HEADER.
004400 10 CW-FUNCTION PIC X(16).
004410 10 CW-FILE-NAME PIC X(8).
004500 10 CW-KEY.
004501 15 CW-OBJID PIC X(64).
004510 15 CW-SEQ PIC 9(3).
004600 10 CW-MSGTXT PIC X(80).
004610 10 CW-MIME-TYPE PIC X(30).
004700 10 CW-SEG-COUNT PIC 9(3).
004710 10 CW-OBJECT-SIZE PIC 9(7).
004720 10 CW-DATA-LEN PIC 9(5).
004730 10 CW-OBJDESC PIC X(30).
004800 05 CW-DATA.
005000 10 CW-DATA-CONTENT PIC X(8000).
CICSWEB Source Listings 183

005100*
005200* Record Layout for VSAM file used to store HTML Objects
005300*
005400 01 CWFILE-RECORD.
005410 05 CWFILE-HEADER.
005500 10 CWFILE-KEY.
005600 15 CWFILE-OBJID PIC X(64).
005700 15 CWFILE-SEQ PIC 9(03).
005800 10 CWFILE-NUM-RECS PIC 9(03).
005900 10 CWFILE-MIME-TYPE PIC X(30).
005910 10 CWFILE-DATA-LEN PIC 9(5).
005920 10 CWFILE-OBJECT-SIZE PIC 9(7).
005930 10 CWFILE-OBJDESC PIC X(30).
006000 05 CWFILE-DATA.
006200 10 CWFILE-DATA-CONTENT PIC X(8000).
006300*
006400 EJECT.
006500 PROCEDURE DIVISION.
006600 A000-MAINLINE.
006700* Check that COMMAREA passed is long enough.
006800* If not, return immediately and do nothing.
006900 IF EIBCALEN < LENGTH OF CW-HEADER
007000 EXEC CICS RETURN END-EXEC
007100 END-IF.
007200*
007300 EVALUATE CW-FUNCTION
007400 WHEN ’Delete Object’ PERFORM B010-DELETE-OBJECT
007600 WHEN ’Retrieve Object’ PERFORM B020-RETRIEVE-OBJECT
007610 WHEN ’Store Object’ PERFORM B030-STORE-OBJECT
007700 WHEN OTHER PERFORM
007800 MOVE SPACES TO CW-MSGTXT
007900 STRING CW-FUNCTION DELIMITED BY SIZE
008000 INTO CW-MSGTXT
008100 WITH POINTER CW-MSG-PTR
008200 END-STRING
008300 STRING CW-MSG-INVALID-FUNCTION DELIMITED BY SIZE
008400 INTO CW-MSGTXT
008500 WITH POINTER CW-MSG-PTR
008600 END-STRING
008700 MOVE LOW-VALUE TO CW-DATA-CONTENT
008800 EXEC CICS RETURN END-EXEC
008900 END-PERFORM
009000 END-EVALUATE.
009100*
009200 A000-EXIT.
009300 GOBACK.
009400*
009500 B010-DELETE-OBJECT.
009510 EXEC CICS DELETE
009520 FILE(CW-FILE-NAME)
009530 RIDFLD(CW-OBJID)
009540 KEYLENGTH(LENGTH OF CW-OBJID)
009550 GENERIC
009560 NOHANDLE
009570 END-EXEC,
009580 IF EIBRESP = DFHRESP(NORMAL)
009581* Build "successful completion" message and return to caller
009582 MOVE SPACES TO CW-MSGTXT
009583 STRING CW-OBJID DELIMITED BY SPACES
009584 INTO CW-MSGTXT
009585 WITH POINTER CW-MSG-PTR
009586 END-STRING
009587 STRING CW-MSG-DELETE-SUCCESSFUL DELIMITED BY SIZE
009588 INTO CW-MSGTXT
009589 WITH POINTER CW-MSG-PTR
009590 END-STRING
009592 EXEC CICS RETURN END-EXEC
009593 END-IF.
009594 IF EIBRESP = DFHRESP(NOTFND)
009595* Build "Object not found" message and return to caller
009596 MOVE SPACES TO CW-MSGTXT
009597 STRING CW-OBJID DELIMITED BY SPACES
009598 INTO CW-MSGTXT
009599 WITH POINTER CW-MSG-PTR
009600 END-STRING
009601 STRING CW-MSG-NOTFOUND DELIMITED BY SIZE
009602 INTO CW-MSGTXT
009603 WITH POINTER CW-MSG-PTR
184 Accessing CICS Business Applications from the WWW

009604 END-STRING
009605 EXEC CICS RETURN END-EXEC
009606 END-IF.
009607* Unexpected CICS response - build error message
009608 MOVE ’DELETE’ TO CW-MSG-FUNCTION
009609 MOVE EIBRSRCE TO CW-MSG-EIBRSRCE
009610 MOVE EIBRESP TO CW-MSG-EIBRESP
009611 MOVE CW-MSG-CICS-ERROR TO CW-MSGTXT
009612 MOVE LOW-VALUE TO CW-DATA-CONTENT
009613 EXEC CICS RETURN END-EXEC.
009910*
009920 B020-RETRIEVE-OBJECT.
009928 EXEC CICS READ
009929 FILE(CW-FILE-NAME)
009930 RIDFLD(CW-KEY)
009931 KEYLENGTH(LENGTH OF CWFILE-KEY)
009932 SET(ADDRESS OF CWFILE-RECORD)
009935 NOHANDLE
009936 END-EXEC,
009937 IF EIBRESP NOT = DFHRESP(NORMAL)
009938 MOVE ’READ’ TO CW-MSG-FUNCTION
009939 MOVE EIBRSRCE TO CW-MSG-EIBRSRCE
009940 MOVE EIBRESP TO CW-MSG-EIBRESP
009941 MOVE CW-MSG-CICS-ERROR TO CW-MSGTXT
009942 MOVE LOW-VALUE TO CW-DATA-CONTENT
009943 EXEC CICS RETURN END-EXEC
009944 END-IF.
009947 MOVE CWFILE-NUM-RECS TO CW-SEG-COUNT.
009948 MOVE CWFILE-MIME-TYPE TO CW-MIME-TYPE.
009949 MOVE CWFILE-OBJECT-SIZE TO CW-OBJECT-SIZE.
009950 MOVE CWFILE-DATA-LEN TO CW-DATA-LEN.
009951 MOVE CWFILE-DATA-CONTENT (1: CW-DATA-LEN) TO CW-DATA-CONTENT.
009960 EXEC CICS RETURN END-EXEC.
010000*
010100 B030-STORE-OBJECT.
010101* Delete any existing object with same name
010102 IF CW-SEQ = 1
010103 EXEC CICS DELETE
010104 FILE(CW-FILE-NAME)
010105 RIDFLD(CW-OBJID)
010106 KEYLENGTH(LENGTH OF CW-OBJID)
010107 GENERIC
010108 NOHANDLE
010109 END-EXEC
010110 END-IF
010111 IF (EIBRESP NOT = DFHRESP(NORMAL) AND
010112 EIBRESP NOT = DFHRESP(NOTFND))
010113 MOVE ’DELETE’ TO CW-MSG-FUNCTION
010114 MOVE EIBRSRCE TO CW-MSG-EIBRSRCE
010115 MOVE EIBRESP TO CW-MSG-EIBRESP
010116 MOVE CW-MSG-CICS-ERROR TO CW-MSGTXT
010117 MOVE LOW-VALUE TO CW-DATA-CONTENT
010118 EXEC CICS RETURN END-EXEC
010119 END-IF.
010120* Build VSAM record and write to file
010121 EXEC CICS GETMAIN
010122 SET(ADDRESS OF CWFILE-RECORD)
010123 LENGTH(LENGTH OF CWFILE-RECORD)
010124 END-EXEC.
010125 MOVE CW-OBJID TO CWFILE-OBJID.
010126 MOVE CW-SEQ TO CWFILE-SEQ.
010127 MOVE CW-SEG-COUNT TO CWFILE-NUM-RECS.
010128 MOVE CW-MIME-TYPE TO CWFILE-MIME-TYPE.
010129 MOVE CW-DATA-LEN TO CWFILE-DATA-LEN.
010130 MOVE CW-OBJECT-SIZE TO CWFILE-OBJECT-SIZE.
010131 MOVE CW-OBJDESC TO CWFILE-OBJDESC.
010132 MOVE CW-DATA-CONTENT TO CWFILE-DATA-CONTENT.
010133 COMPUTE CW-RECLEN = CWFILE-DATA-LEN + LENGTH OF CWFILE-HEADER.
010134 EXEC CICS WRITE
010135 FILE(CW-FILE-NAME)
010136 RIDFLD(CWFILE-KEY)
010137 KEYLENGTH(LENGTH OF CWFILE-KEY)
010138 FROM(CWFILE-RECORD)
010139 LENGTH(CW-RECLEN)
010140 NOHANDLE
010141 END-EXEC,
010142 IF EIBRESP NOT = DFHRESP(NORMAL)
010143 MOVE ’WRITE’ TO CW-MSG-FUNCTION
CICSWEB Source Listings 185

010144 MOVE EIBRSRCE TO CW-MSG-EIBRSRCE
010145 MOVE EIBRESP TO CW-MSG-EIBRESP
010146 MOVE CW-MSG-CICS-ERROR TO CW-MSGTXT
010147 MOVE LOW-VALUE TO CW-DATA-CONTENT
010148 EXEC CICS RETURN END-EXEC
010149 END-IF.
010150* Build "successful completion" message and return to caller
010151 MOVE SPACES TO CW-MSGTXT.
010152 STRING CW-OBJID DELIMITED BY SPACES
010153 INTO CW-MSGTXT
010154 WITH POINTER CW-MSG-PTR
010155 END-STRING.
010160 STRING CW-MSG-STORE-SUCCESSFUL DELIMITED BY SIZE
010170 INTO CW-MSGTXT
010180 WITH POINTER CW-MSG-PTR
010190 END-STRING.
010191 MOVE LOW-VALUE TO CW-DATA-CONTENT.
010200 EXEC CICS RETURN END-EXEC.
010300*
186 Accessing CICS Business Applications from the WWW

B.6 CICS COBOL Program to List Objects
000100***
000200* CWLIST - CICS Server program for Web Sample *
000300***
000400* CREATED 95/08/10 BY David Thrum *
000500* *
000600* COPYRIGHT - IBM *
000700* *
000800* FUNCTION - Called from Web Server via ECI *
000900* - Lists objects stored in CICS "Object Store" *
001500* PARAMETERS PASSED *
001600* - CICS COMMAREA *
001700* *
001710* This is an example of a program that is "HTML-aware". *
001720* It formats the data returned as HTML that can be passed *
001730* directly to the Web Browser for display. *
001770* *
001800***
001900 IDENTIFICATION DIVISION.
002000 PROGRAM-ID. CWLIST.
002100 ENVIRONMENT DIVISION.
002200 DATA DIVISION.
002300*
002400 WORKING-STORAGE SECTION.
002500*
002600* MISCELLANEOUS WORK AREAS/CONSTANTS
002700*
002840 77 WS-KEY-GT-FLAG PIC X(1) VALUE ’N’.
002841 77 WS-KEY PIC X(67).
002842 77 WS-KEYLEN PIC S9(4) COMP.
002850 77 CW-TXT-PTR PIC 9(5) COMP VALUE 1.
002860 77 WS-PREPEND-STRING PIC X(64) VALUE SPACES.
002900*
003000* Text for messages
003100*
003200 01 CW-MESSAGES.
003300 05 CW-MSG-PTR PIC 9(4) COMP VALUE 1.
003400 05 CW-MSG-INVALID-FUNCTION PIC X(30)
003500 VALUE ’is an invalid function request’.
003523 05 CW-MSG-NOTFOUND PIC X(14)
003524 VALUE ’ was not found’.
003530 05 CW-MSG-CICS-ERROR.
003550 10 FILLER PIC X(22) VALUE ’Unexpected return code’.
003560 10 CW-MSG-EIBRESP PIC 9(2).
003570 10 FILLER PIC X(4) VALUE ’ on ’.
003580 10 CW-MSG-FUNCTION PIC X(10).
003590 10 FILLER PIC X(1) VALUE ’ ’.
003591 10 CW-MSG-EIBRSRCE PIC X(8).
003600*
003700 LINKAGE SECTION.
003800 01 DFHCOMMAREA PIC X(32500).
003900*
004000* LAYOUT FOR COMMMAREA
004100*
004200 01 CW-COMMAREA REDEFINES DFHCOMMAREA.
004300 05 CW-HEADER.
004400 10 CW-FUNCTION PIC X(16).
004410 10 CW-FILE-NAME PIC X(8).
004500 10 CW-KEY.
004501 15 CW-OBJID PIC X(64).
004510 15 CW-SEQ PIC 9(3).
004601 10 CW-MSGTXT PIC X(80).
004610 10 CW-MIME-TYPE PIC X(30).
004620 10 CW-KEYLEN PIC 9(02).
004800 05 CW-DATA.
005000 10 CW-DATA-LENGTH PIC 9(5).
005010 10 CW-DATA-CONTENT PIC X(32000).
005100*
005200* Record Layout for VSAM file used to store HTML Objects
005300*
005400 01 CWFILE-RECORD.
005410 05 CWFILE-HEADER.
005500 10 CWFILE-KEY.
005600 15 CWFILE-OBJID PIC X(64).
005700 15 CWFILE-SEQ PIC 9(03).
005800 10 CWFILE-NUM-RECS PIC 9(03).
CICSWEB Source Listings 187

005900 10 CWFILE-MIME-TYPE PIC X(30).
005910 10 CWFILE-DATA-LEN PIC 9(5).
005920 10 CWFILE-OBJECT-SIZE PIC 9(7).
005930 10 CWFILE-OBJDESC PIC X(30).
006000 05 CWFILE-DATA.
006200 10 CWFILE-DATA-CONTENT PIC X(8000).
006300*
006400 EJECT.
006500 PROCEDURE DIVISION.
006600 A000-MAINLINE.
006700* Check that COMMAREA passed is long enough.
006800* If not, return immediately and do nothing.
006900 IF EIBCALEN < LENGTH OF CW-HEADER
007000 EXEC CICS RETURN END-EXEC
007100 END-IF.
007110*
007200* Check that we are called with correct function request
007300 EVALUATE CW-FUNCTION
007400 WHEN ’List Objects’ PERFORM B010-LIST-OBJECTS
007700 WHEN OTHER PERFORM
007800 MOVE SPACES TO CW-MSGTXT
007900 STRING CW-FUNCTION DELIMITED BY SIZE
008000 INTO CW-MSGTXT
008100 WITH POINTER CW-MSG-PTR
008200 END-STRING
008300 STRING CW-MSG-INVALID-FUNCTION DELIMITED BY SIZE
008400 INTO CW-MSGTXT
008500 WITH POINTER CW-MSG-PTR
008600 END-STRING
008700 MOVE LOW-VALUE TO CW-DATA-CONTENT
008800 EXEC CICS RETURN END-EXEC
008900 END-PERFORM
009000 END-EVALUATE.
009100*
009200 A000-EXIT.
009300 GOBACK.
009400*
009500 B010-LIST-OBJECTS.
009600* get string to prepend to file key to build URL in anchor
009620 MOVE CW-DATA-CONTENT (1: CW-DATA-LENGTH) TO WS-PREPEND-STRING
009700 IF CW-KEYLEN IS NUMERIC MOVE CW-KEYLEN TO WS-KEYLEN
009800 ELSE MOVE 0 TO WS-KEYLEN.
009900 IF WS-KEYLEN = 0 THEN
009910 MOVE 1 TO WS-KEYLEN
009920 MOVE 0 TO CW-KEYLEN
009928 EXEC CICS STARTBR
009929 FILE(CW-FILE-NAME)
009930 RIDFLD(CW-KEY)
009931 KEYLENGTH(WS-KEYLEN)
009932 GTEQ
009933 GENERIC
009935 NOHANDLE
009936 END-EXEC
009937 ELSE
009938 MOVE CW-KEY TO WS-KEY
009939 EXEC CICS STARTBR
009940 FILE(CW-FILE-NAME)
009941 RIDFLD(CW-KEY)
009942 KEYLENGTH(WS-KEYLEN)
009943 EQUAL
009944 GENERIC
009945 NOHANDLE
009946 END-EXEC
009947 END-IF.
009948 IF EIBRESP = DFHRESP(NOTFND)
009949* Build "Object not found" message and return to caller
009950 MOVE SPACES TO CW-MSGTXT
009951 STRING CW-OBJID DELIMITED BY SPACES
009952 INTO CW-MSGTXT
009953 WITH POINTER CW-MSG-PTR
009954 END-STRING
009955 STRING CW-MSG-NOTFOUND DELIMITED BY SIZE
009956 INTO CW-MSGTXT
009957 WITH POINTER CW-MSG-PTR
009958 END-STRING
009959 EXEC CICS RETURN END-EXEC
009960 END-IF.
009961* Unexpected CICS response - build error message
188 Accessing CICS Business Applications from the WWW

009962 IF EIBRESP NOT = DFHRESP(NORMAL)
009963 MOVE ’STARTBR’ TO CW-MSG-FUNCTION
009964 MOVE EIBRSRCE TO CW-MSG-EIBRSRCE
009965 MOVE EIBRESP TO CW-MSG-EIBRESP
009966 MOVE CW-MSG-CICS-ERROR TO CW-MSGTXT
009967 MOVE LOW-VALUE TO CW-DATA-CONTENT
009968 EXEC CICS RETURN END-EXEC
009969 END-IF.
009970*
009985 STRING ’<TABLE BORDER=4><THEAD><TR><TH align=left>
’
009986 DELIMITED BY SIZE
009987 INTO CW-DATA-CONTENT
009988 WITH POINTER CW-TXT-PTR
009989 END-STRING.
009990 STRING ’Object Name<TH align=left>
Description<TH>’
009991 DELIMITED BY SIZE
009992 INTO CW-DATA-CONTENT
009993 WITH POINTER CW-TXT-PTR
009994 END-STRING.
009995 STRING ’Content
Type<TH>Object
Size</thead><BODY>’
009996 DELIMITED BY SIZE
009997 INTO CW-DATA-CONTENT
009998 WITH POINTER CW-TXT-PTR
009999 END-STRING.
010000*
010001* Initial read..
010002*
010003 EXEC CICS READNEXT
010004 FILE(CW-FILE-NAME)
010005 RIDFLD(CW-KEY)
010006 KEYLENGTH(WS-KEYLEN)
010007 SET(ADDRESS OF CWFILE-RECORD)
010008 NOHANDLE
010009 END-EXEC,
010010*
010011* Read all records starting from supplied partial key
010012*
010013 PERFORM UNTIL EIBRESP NOT = DFHRESP(NORMAL) OR
010014 WS-KEY-GT-FLAG = ’Y’
010015 IF EIBRESP NOT = DFHRESP(NORMAL)
010016 MOVE ’READ’ TO CW-MSG-FUNCTION
010017 MOVE EIBRSRCE TO CW-MSG-EIBRSRCE
010018 MOVE EIBRESP TO CW-MSG-EIBRESP
010019 MOVE CW-MSG-CICS-ERROR TO CW-MSGTXT
010020 MOVE LOW-VALUE TO CW-DATA-CONTENT
010021 EXEC CICS RETURN END-EXEC
010022 END-IF
010023 IF CWFILE-SEQ = 1
010024 STRING ’<TR><TD><A HREF="’ DELIMITED BY SIZE
010025 INTO CW-DATA-CONTENT
010026 WITH POINTER CW-TXT-PTR
010027 END-STRING
010028 STRING WS-PREPEND-STRING DELIMITED BY SPACES
010029 INTO CW-DATA-CONTENT
010030 WITH POINTER CW-TXT-PTR
010031 END-STRING
010032 STRING CW-KEY DELIMITED BY SPACES
010033 INTO CW-DATA-CONTENT
010034 WITH POINTER CW-TXT-PTR
010035 END-STRING
010036 STRING ’">’ DELIMITED BY SIZE
010037 INTO CW-DATA-CONTENT
010038 WITH POINTER CW-TXT-PTR
010039 END-STRING
010040 STRING CW-KEY DELIMITED BY SPACES
010041 INTO CW-DATA-CONTENT
010042 WITH POINTER CW-TXT-PTR
010043 END-STRING
010044 STRING ’<TD>’ DELIMITED BY SIZE
010045 INTO CW-DATA-CONTENT
010046 WITH POINTER CW-TXT-PTR
010047 END-STRING
010048 STRING CWFILE-OBJDESC DELIMITED BY SIZE
010049 INTO CW-DATA-CONTENT
010050 WITH POINTER CW-TXT-PTR
010051 END-STRING
010052 STRING ’<TD>’ DELIMITED BY SIZE
010053 INTO CW-DATA-CONTENT
CICSWEB Source Listings 189

010054 WITH POINTER CW-TXT-PTR
010055 END-STRING
010056 STRING CWFILE-MIME-TYPE DELIMITED BY SPACES
010057 INTO CW-DATA-CONTENT
010058 WITH POINTER CW-TXT-PTR
010059 END-STRING
010060 STRING ’<TD>’ DELIMITED BY SIZE
010061 INTO CW-DATA-CONTENT
010062 WITH POINTER CW-TXT-PTR
010063 END-STRING
010064 STRING CWFILE-OBJECT-SIZE DELIMITED BY SPACES
010065 INTO CW-DATA-CONTENT
010066 WITH POINTER CW-TXT-PTR
010067 END-STRING
010068 END-IF
010069 EXEC CICS READNEXT
010070 FILE(CW-FILE-NAME)
010071 RIDFLD(CW-KEY)
010072 KEYLENGTH(WS-KEYLEN)
010073 SET(ADDRESS OF CWFILE-RECORD)
010074 NOHANDLE
010075 END-EXEC
010076* Check if we have passed value of generic key
010077 IF CW-KEYLEN NOT = 0 AND
010078 CW-KEY (1: WS-KEYLEN) NOT = WS-KEY (1: WS-KEYLEN)
010079 MOVE ’Y’ TO WS-KEY-GT-FLAG
010080 END-IF
010081 END-PERFORM
010082*
010083* Finish formatting list display
010084*
010085 STRING ’</TABLE><P>’ DELIMITED BY SIZE
010086 INTO CW-DATA-CONTENT
010087 WITH POINTER CW-TXT-PTR
010088 END-STRING.
010089 EXEC CICS ENDBR
010090 FILE(CW-FILE-NAME)
010091 NOHANDLE
010092 END-EXEC.
010093 COMPUTE CW-DATA-LENGTH = CW-TXT-PTR - 1.
010094 EXEC CICS RETURN END-EXEC.
010100*
010300*
190 Accessing CICS Business Applications from the WWW

B.7 CICS Data Conversion Table
*
*
 DFHCNV TYPE=INITIAL,CDEPAGE=(437)
* DFHCNV TYPE=INITIAL,CDEPAGE=(437,USRD)
*
* THIS TABLE IS NEEDED ON THE HOST FOR ASCII <-> EBCDIC DATA CONVERSION
*
* ::: ::: ::: :::
*
 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=CWLIST,USREXIT=NO
 DFHCNV TYPE=SELECT,OPTION=DEFAULT
 DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=32767, X
 LAST=YES
*
 DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=CWSERVER,USREXIT=NO
 DFHCNV TYPE=SELECT,OPTION=DEFAULT
 DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=246, X
 LAST=YES
*
* ::: ::: ::: :::
*
LABLN DFHCNV TYPE=FINAL
 END DFHCNVBA
CICSWEB Source Listings 191

B.8 VSAM File Definition
//CICSRS1V JOB (999,POK),’CICSRS1’,NOTIFY=CICSRS1,
// CLASS=A,MSGCLASS=T,TIME=1439,
// MSGLEVEL=(1,1)
//*
//* DELETE/DEFINE VSAM KSDS USED BY CICSWEB SAMPLE APPLICATION
//*
//DEFINE EXEC PGM=IDCAMS,REGION=1M
//AMSDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE (CICSRS1.CWFILE) PURGE CLUSTER
 DEFINE CLUSTER (NAME(CICSRS1.CWFILE) -
 RECSZ(256 8184) -
 REC(100 100) -
 KEYS(67,0) -
 INDEXED -
 UNIQUE -
 IMBED -
 FREESPACE(0 20) -
 VOLUMES(STCIC1)) -
 DATA (NAME(CICSRS1.CWFILE.DATA) -
 CISZ(8192)) -
 INDEX (NAME(CICSRS1.CWFILE.INDEX))
 /* LOAD A DUMMY RECORD */
 REPRO INFILE(DATAIN) OUTDATASET(CICSRS1.CWFILE)
//*
//DATAIN DD *
 INITIAL RECORD-------------------------------
//*
192 Accessing CICS Business Applications from the WWW

Appendix C. CICS/ESA State Management Sample

This appendix contains the source code for the sample CICS/ESA state
management program CICSSTAT and the sample application that illustrates the
use of CICSSTAT. It includes the following components:

 • REXX CGI script.

 • COBOL CICS/ESA Web server application program.

 • Assembler CICS/ESA state management program.

C.1 REXX CGI Script
/**/
/* A Forms Program which will use state information to identify the */
/* source of the request, and retrieve any stored data associated */
/* with that user from the form. */
/**/

say "Content-type: text/html"
say""

/* If there is any forms data for us to read */
/* read it in and parse it. */

env = ’OS2ENVIRONMENT’
cl = value(’CONTENT_LENGTH’,,env)

if cl > 0 then do
 newitem = ""
 len = c2d(cl)

 data = charin(,,len)
 /* Set input fields from the incoming data stream */
 data=data’&’
 do until data=’’
 parse var data assign ’&’ data /* Parse data for input fields */
 parse var assign inname ’=’ value /* ’name=’ to assign, value to value*/
 value = translate(value,’ ’,’2b090a0d’x) /* Get rid of ’+’, CR, LF */
 inname = packur(inname) /* call packur to decode esc chars */

 /* Put the input parameters into corresponding variables */
 select
 when inname = "handle" then
 handle = value
 when inname = "function" then
 function = packur(value)
 when inname = "action" then
 action = packur(value)
 when inname = "state" then
 state = packur(value)
 when inname = "submit-b" then
 submitb = packur(value)
 when inname = "name" then
 name = packur(value)
 when inname = "address" then
 address = packur(value)
 otherwise
 do
 newitem = packur(value)
 end
 end /* select */
 end /* parsing of input data */

 /* Now build parameter list for CICS */
 if handle = "" then
 /* a logic error has occurred since if there is forms output, */
 /* we should always have a handle */
 /* Issue an error message and start again */
 do
 say "<P>A logic error has occurred. Please re-register with CICS"
 commarea = left("IDENTIFY",1024,’ ’)
© Copyright IBM Corp. 1998 193

 end /* no handle in form */

 else
 do
 commarea = left(function,10,’ ’)
 commarea = commarea||handle
 commarea = commarea||left(action,6.’ ’)
 commarea = commarea||left(name,30,’ ’)
 commarea = commarea||left(address,70,’ ’)
 commarea = commarea||left(newitem,390,’ ’)
 end
end

else
 /**/
 /* There is no forms data to be read in, so this must be a new */
 /* conversation. Build the appropriate parameter */
 /* list and pass it to CICS. */
 /**/
 do
 commarea = "IDENTIFY "
end
say ecicall(commarea)
return

ecicall: procedure
arg incomm

/***/
/* */
/* This program demonstrates a synchronous, non-extended call to */
/* CICS program (SAMPLE) using RxECI with DEBUG enabled. */
/* */
/***/
 If rxfuncquery(’ECI’) Then Do
 If rxfuncadd(’ECI’, ’RXECI’, ’RxECI’) Then signal failure
 /* say "ECI registered" */
 End
DEBUG=0
DEBUGFILE="rxeci.log"

/* provide a simple COMMAREA just filled with ’.’ */
 commarea = left(incomm,1024,’00’x)
/* default is "ECIPROG " */
 ECI.userid = "SYSAD"
 ECI.program_name = "SWLIST2"

 commarea2 =ECI(’ECI.’,commarea)
 rc = check_rc(commarea2)

/* throw the following line away in non-development mode */
 rc = rxfuncdrop(’ECI’)

return commarea2

/***/
/* some utility functions */
/***/

check_rc: procedure expose ECI.
arg commarea

 msgfile = "faaeci.msg"
 rc = show_eci_stem()
 if (ECI.return_code \= 0) then do
 say "RxECI failed"
 do until lines(msgfile) = 0
 line = linein(msgfile)
 parse var line returncode message
 if ECI.return_code = returncode then say message
 end
 end
 rc = lineout(msgfile)
return(0)

show_eci_stem: procedure expose ECI.
194 Accessing CICS Business Applications from the WWW

return(0)

/* return code from ECI */
 ECI.return_code = "" /* response */

FAILURE:
 Say ’Failure to add function at line’ sigl
 Address CMD "PAUSE"
 Return 1

C.2 COBOL CICS/ESA Web Server Application Program

 * SWLIST2- CICS Server program for Web State Sample *

 * CREATED 95/08/10 BY Steve Wall *
 * *
 * COPYRIGHT - IBM *
 * *
 * FUNCTION - Called from Web Server via ECI *
 * - Builds lists of objects on TS in CICS *
 * PARAMETERS PASSED *
 * - CICS COMMAREA *
 * *
 * This is an example of a program that is "HTML-aware". *
 * It formats the data returned as HTML that can be passed *
 * directly to the Web Browser for display. *
 * *

 IDENTIFICATION DIVISION.
 PROGRAM-ID. SWLIST2.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 *
 WORKING-STORAGE SECTION.
 *
 * MISCELLANEOUS WORK AREAS/CONSTANTS
 *
 *
 * FUNCTION CONSTANTS
 *
 77 SW-IDENTIFY PIC X(10) VALUE ’IDENTIFY ’.
 77 SW-ADD PIC X(10) VALUE ’ADD ’.
 77 SW-DELETE PIC X(10) VALUE ’DELETE ’.
 77 SW-REGISTER PIC X(10) VALUE ’REGISTER ’.
 *
 * STATE COMMAREA CONSTANTS
 *
 77 ST-CREATE PIC X(1) VALUE ’C’.
 77 ST-RETRIEVE PIC X(1) VALUE ’R’.
 77 ST-STORE PIC X(1) VALUE ’S’.
 77 ST-DESTROY PIC X(1) VALUE ’D’.
 77 ST-EYE-INIT PIC X(4) VALUE ’COM>’.
 *
 77 STATE-MANAGER PIC X(8) VALUE ’CICSSTAT’.
 77 QUEUE-TEXT PIC X(80).
 77 TSQ-LENGTH-VALUE PIC 9(4) COMP VALUE 80.
 *
 * STATE COMMAREA
 *
 01 ST-COMMAREA.
 05 ST-EYECATCHER PIC X(4).
 05 ST-FUNCTION PIC X(1).
 05 ST-RETCODE PIC X(1).
 05 FILLER PIC X(2).
 05 ST-HANDLE PIC 9(8) COMP.
 05 ST-DATA.
 10 ST-NAME PIC X(30).
 10 ST-ADDRESS PIC X(70).
 10 ST-FORM-FUNCTION PIC X(1).
 10 FILLER PIC X(3).
 10 ST-TSQ-NAME.
 15 ST-TSQ-FIRST PIC X(4).
 15 ST-TSQ-SECOND PIC 9(8) COMP.
CICS/ESA State Management Sample 195

 10 ST-ITEMNUM PIC S9(4) COMP.
 10 FILLER PIC X(133).
 *
 * Text for messages
 *
 01 MSG-TXT PIC X(80).
 01 TEMPNUM PIC S9(4) COMP.
 01 ITEMNUM PIC S9(4) COMP.
 01 CHAR-HANDLE PIC 9(8).
 01 SW-TXT-PTR PIC 9(4) COMP VALUE 1.
 01 ST-COMMAREA-LENGTH PIC 9(9) COMP VALUE 268.
 01 TSQ-LENGTH PIC 9(4) COMP.
 *
 LINKAGE SECTION.
 01 DFHCOMMAREA PIC X(500).
 *
 * LAYOUT FOR COMMAREA
 *
 01 SW-COMMAREA REDEFINES DFHCOMMAREA.
 05 SW-HEADER.
 10 SW-FUNCTION PIC X(10).
 10 SW-HANDLE PIC 9(8).
 10 SW-ACTION PIC X(6).
 10 SW-NAME PIC X(30).
 10 SW-ADDRESS PIC X(70).
 10 SW-SPARE PIC X(900).
 *
 01 SW-OUTPUT REDEFINES SW-COMMAREA.
 05 SW-DATA-CONTENT PIC X(1024).
 *
 EJECT.
 PROCEDURE DIVISION.
 A000-MAINLINE.
 * Check that COMMAREA passed is long enough.
 * If not, return immediately and do nothing.
 IF EIBCALEN < LENGTH OF SW-HEADER
 EXEC CICS RETURN END-EXEC
 END-IF.
 *
 * Save name and address in local storage
 *
 EVALUATE SW-FUNCTION
 WHEN ’IDENTIFY ’ PERFORM B010-IDENTIFY
 THRU B010-IDENTIFY-EXIT
 WHEN ’REGISTER ’ PERFORM C020-REGISTER-USER
 THRU C020-REGISTER-USER-EXIT
 WHEN ’ADD ’ PERFORM H070-SELECT-ACTION
 THRU H070-SELECT-ACTION-EXIT
 WHEN ’DELETE ’ PERFORM E040-DELETE-LIST
 THRU E040-DELETE-LIST-EXIT
 WHEN OTHER PERFORM F050-INVALID-FUNCTION
 THRU F050-INVALID-FUNCTION-EXIT
 END-EVALUATE.

 EXEC CICS RETURN END-EXEC.
 *
 A000-EXIT.
 GOBACK.
 *
 B010-IDENTIFY.
 **
 * Create a new status block for this new conversation *
 **
 MOVE ST-CREATE TO ST-FUNCTION.
 MOVE ST-EYE-INIT TO ST-EYECATCHER.
 EXEC CICS LINK PROGRAM(’CICSSTAT’)
 COMMAREA(ST-COMMAREA)
 LENGTH(ST-COMMAREA-LENGTH)
 END-EXEC.
 IF EIBRESP NOT EQUAL DFHRESP(NORMAL) THEN
 **
 * If the link was successful and the State Manager returned
 * no error, go ahead and update our list
 **
 MOVE ’Link to State Manager failed ’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 IF ST-RETCODE NOT EQUAL LOW-VALUE THEN
 MOVE ’State Manager detected error ’ TO MSG-TXT
196 Accessing CICS Business Applications from the WWW

 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 MOVE ST-HANDLE TO CHAR-HANDLE
 MOVE SW-REGISTER TO ST-FORM-FUNCTION.
 PERFORM B010-IDENTIFY-BUILD THRU B010-IDENTIFY-BUILD-EXIT.
 B010-IDENTIFY-EXIT.
 *
 C020-REGISTER-USER.
 MOVE ST-RETRIEVE TO ST-FUNCTION.
 MOVE SW-HANDLE TO ST-HANDLE.
 EXEC CICS LINK PROGRAM(STATE-MANAGER)
 COMMAREA(ST-COMMAREA)
 LENGTH(ST-COMMAREA-LENGTH)
 NOHANDLE
 END-EXEC.
 MOVE SW-NAME TO ST-NAME.
 MOVE SW-ADDRESS TO ST-ADDRESS.
 MOVE SW-ADD TO ST-FORM-FUNCTION.
 STRING SW-NAME
 DELIMITED BY SIZE
 INTO ST-TSQ-FIRST
 END-STRING.
 MOVE ST-HANDLE TO ST-TSQ-SECOND.
 MOVE ST-STORE TO ST-FUNCTION.
 MOVE SW-HANDLE TO ST-HANDLE.
 EXEC CICS LINK PROGRAM(STATE-MANAGER)
 COMMAREA(ST-COMMAREA)
 LENGTH(ST-COMMAREA-LENGTH)
 NOHANDLE
 END-EXEC.
 IF EIBRESP NOT EQUAL DFHRESP(NORMAL) THEN
 **
 * If the link was successful and the State Manager returned
 * no error, go ahead and update our list
 **
 MOVE ’Link to State Manager failed ’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 IF ST-RETCODE NOT EQUAL LOW-VALUE THEN
 MOVE ’State Manager detected error ’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 PERFORM C020-REGISTER-BUILD THRU C020-REGISTER-BUILD-EXIT.
 C020-REGISTER-USER-EXIT.
 H070-SELECT-ACTION.
 EVALUATE SW-ACTION
 WHEN ’ADD ’
 PERFORM D030-ADD-ITEM THRU D030-ADD-ITEM-EXIT
 WHEN ’DELETE’
 PERFORM E040-DELETE-LIST THRU E040-DELETE-LIST-EXIT
 WHEN OTHER
 PERFORM D030-ADD-ITEM THRU D030-ADD-ITEM-EXIT
 END-EVALUATE.
 H070-SELECT-ACTION-EXIT.
 D030-ADD-ITEM.
 MOVE ST-RETRIEVE TO ST-FUNCTION.
 MOVE SW-HANDLE TO CHAR-HANDLE
 MOVE SW-HANDLE TO ST-HANDLE.
 **
 * Link to the State Manager to retrieve our state data *
 **
 EXEC CICS LINK PROGRAM(STATE-MANAGER)
 COMMAREA(ST-COMMAREA)
 LENGTH(ST-COMMAREA-LENGTH)
 NOHANDLE
 END-EXEC
 IF EIBRESP NOT EQUAL DFHRESP(NORMAL) THEN
 **
 * If the link was successful and the State Manager returned
 * no error, go ahead and update our list
 **
 MOVE ’Link to State Manager failed ’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 IF ST-RETCODE NOT EQUAL LOW-VALUE THEN
 MOVE ’State Manager detected error ’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 **
 * If name and address in the form do not match state data then *
 * raise an error *
 **
 IF ST-NAME NOT = SW-NAME THEN
CICS/ESA State Management Sample 197

 MOVE ’STATE MISMATCH IN NAME FIELD ’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 IF ST-ADDRESS NOT = SW-ADDRESS THEN
 MOVE ’STATE MISMATCH IN ADDRESS FIELD’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 **
 * Write the new data to the TS Queue *
 **
 MOVE ST-ITEMNUM TO ITEMNUM.
 COMPUTE ITEMNUM = ITEMNUM + 1.
 STRING SW-SPARE
 DELIMITED BY SPACES
 INTO QUEUE-TEXT
 END-STRING.
 EXEC CICS WRITEQ TS
 QUEUE(ST-TSQ-NAME)
 ITEM(ITEMNUM)
 FROM(QUEUE-TEXT)
 LENGTH(80)
 NOHANDLE
 END-EXEC
 IF EIBRESP = DFHRESP(NORMAL) THEN
 **
 * If the write was OK, update our state data *
 **
 MOVE ITEMNUM TO ST-ITEMNUM
 MOVE ST-STORE TO ST-FUNCTION
 EXEC CICS LINK PROGRAM(STATE-MANAGER)
 COMMAREA(ST-COMMAREA)
 LENGTH(ST-COMMAREA-LENGTH)
 NOHANDLE
 END-EXEC
 PERFORM D030-ADD-BUILD THRU D030-ADD-BUILD-EXIT
 END-IF.
 D030-ADD-ITEM-EXIT.
 E040-DELETE-LIST.
 MOVE ST-RETRIEVE TO ST-FUNCTION.
 MOVE SW-HANDLE TO CHAR-HANDLE
 MOVE SW-HANDLE TO ST-HANDLE.
 **
 * Link to the State Manager to retrieve our state data *
 **
 EXEC CICS LINK PROGRAM(STATE-MANAGER)
 COMMAREA(ST-COMMAREA)
 LENGTH(ST-COMMAREA-LENGTH)
 NOHANDLE
 END-EXEC
 IF EIBRESP NOT EQUAL DFHRESP(NORMAL) THEN
 **
 * If the link was successful and the State Manager returned
 * no error, go ahead and update our list
 **
 MOVE ’Link to State Manager failed ’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 IF ST-RETCODE NOT EQUAL LOW-VALUE THEN
 MOVE ’State Manager detected error ’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 **
 * If name and address in the form do not match state data then *
 * raise an error *
 **
 IF ST-NAME NOT EQUAL SW-NAME THEN
 MOVE ’Invalid name supplied in form ’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 IF ST-ADDRESS NOT EQUAL SW-ADDRESS THEN
 MOVE ’Invalid address supplied in form’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 **
 * Delete our TS queue *
 **
 EXEC CICS DELETEQ TS
 QUEUE(ST-TSQ-NAME)
 NOHANDLE
 END-EXEC
 IF EIBRESP = DFHRESP(NORMAL) THEN
 **
 * If the write was OK, update our state data *
 **
198 Accessing CICS Business Applications from the WWW

 MOVE ITEMNUM TO ST-ITEMNUM.
 MOVE ST-DESTROY TO ST-FUNCTION.
 EXEC CICS LINK PROGRAM(STATE-MANAGER)
 COMMAREA(ST-COMMAREA)
 LENGTH(ST-COMMAREA-LENGTH)
 NOHANDLE
 END-EXEC
 IF EIBRESP NOT EQUAL DFHRESP(NORMAL) THEN
 **
 * If the link was successful and the State Manager returned
 * no error, go ahead and update our list
 **
 MOVE ’Link to State Manager failed ’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 IF ST-RETCODE NOT EQUAL LOW-VALUE THEN
 MOVE ’State Manager detected error ’ TO MSG-TXT
 PERFORM J070-ERROR THRU J070-ERROR-EXIT.
 PERFORM E040-DELETE-BUILD THRU E040-DELETE-BUILD-EXIT.
 E040-DELETE-LIST-EXIT.
 B010-IDENTIFY-BUILD.
 MOVE LOW-VALUE TO SW-DATA-CONTENT.
 STRING ’<HTML><HEAD><TITLE>NAME AND ADDRESS</TITLE></HEAD>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<IMG SRC="http://ladoga.sanjose.ibm.com/’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’slwhtml/slwimg/cwmast.gif" ALT="CICSWEB Masthead">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<P>This is a sample application written to ill’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’ustrate how the CICSSTAT sample application ca’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’n be used to manage state information. ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’It creates, adds to, and deletes, a shopping li’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’st held on CICS Temporary Storage. ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<FORM METHOD=POST ACTION="/cgi-bin/REXXCIC3" >’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<INPUT TYPE="HIDDEN" NAME="function" ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 STRING ’VALUE="REGISTER">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<INPUT TYPE="HIDDEN" NAME="handle" VALUE=’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
CICS/ESA State Management Sample 199

 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING CHAR-HANDLE
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<P>Enter your name and address in the fields below:’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<P>Name: <INPUT TYPE="text" NAME="name" SIZE=30’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’ VALUE="">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<P>Address:<INPUT TYPE="text" NAME="address"’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’ SIZE=70 VALUE="">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<P>Click here to register with the server: <’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’INPUT TYPE="submit" NAME="action" VALUE="REG ">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 STRING ’<P>Click here to terminate the conversation: ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<INPUT TYPE="submit" NAME="action" VALUE="DELETE">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’</FORM>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 B010-IDENTIFY-BUILD-EXIT.
 C020-REGISTER-BUILD.
 MOVE LOW-VALUE TO SW-DATA-CONTENT.
 STRING ’<HTML><HEAD>Shopping list</HEAD>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<TITLE>Display Shopping List</TITLE</HEAD>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<IMG SRC="http://ladoga.sanjose.ibm.com/slwhtml/’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
200 Accessing CICS Business Applications from the WWW

 END-STRING.
 STRING ’slwimg/cwmast.gif" ALT="CICSWEB Masthead" ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’ ALIGN="TOP">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<FORM METHOD=POST ACTION="/cgi-bin/REXXCIC3" >’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<INPUT TYPE="HIDDEN" NAME="function" ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 STRING ’VALUE="ADD ">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<INPUT TYPE="HIDDEN" NAME="name" VALUE=’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ST-NAME
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’><INPUT TYPE="HIDDEN" NAME="handle" VALUE=’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING CHAR-HANDLE
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’><INPUT TYPE="HIDDEN" NAME="address" VALUE=’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ST-ADDRESS
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’><P>There are no items currently on your ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’shopping list. <P>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’Enter the item you wish to add to the list here:’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<P>Item: <INPUT TYPE="text" NAME="item" SIZE=30 ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
CICS/ESA State Management Sample 201

 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’VALUE="">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<P>Click here to add this input to the list:’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<INPUT TYPE="submit" NAME="action" ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’VALUE="ADD "> <P>Click here to delete this’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’list: <INPUT TYPE="submit" NAME="action" ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’VALUE="DELETE"> </FORM>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 C020-REGISTER-BUILD-EXIT.
 D030-ADD-BUILD.
 MOVE LOW-VALUE TO SW-DATA-CONTENT
 STRING ’<HTML><HEAD>Shopping list</HEAD>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<TITLE>Display Shopping List</TITLE</HEAD>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<IMG SRC="http://ladoga.sanjose.ibm.com/slwhtml/slw’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’img/cwmast.gif" ALT="CICSWEB Masthead" ALIGN="TOP">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<FORM METHOD=POST ACTION="/cgi-bin/REXXCIC3" >’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<INPUT TYPE="HIDDEN" NAME="function" ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 STRING ’VALUE="ADD ">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<INPUT TYPE="HIDDEN" NAME="name" VALUE=’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ST-NAME
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
202 Accessing CICS Business Applications from the WWW

 END-STRING.
 STRING ’><INPUT TYPE="HIDDEN" NAME="handle" VALUE=’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING CHAR-HANDLE
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’><INPUT TYPE="HIDDEN" NAME="address" VALUE=’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ST-ADDRESS
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 IF ST-ITEMNUM NOT EQUAL 0 THEN
 PERFORM D030-GET-TS-QUEUE THRU D030-GET-TS-QUEUE-EXIT
 ELSE
 STRING ’><P>There are no items currently on your shopping’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<P>Enter the name of an item you wish to add’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’ to the list: ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<P>Item: <INPUT TYPE="text" NAME="item" SIZE=30 VA’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’LUE=""><P>Click here to add this input to the list:’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<INPUT TYPE="submit" NAME="action" VALUE="ADD ">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<P>Click here to delete this shopping list: ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<INPUT TYPE="submit" NAME="action" ’ ’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’VALUE="DELETE"></FORM>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 D030-ADD-BUILD-EXIT.
 *
 D030-GET-TS-QUEUE.
 STRING ’><P>You currently have the following items on’
CICS/ESA State Management Sample 203

 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’ your shopping list: <P>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 PERFORM D030-READ-LOOP THRU D030-READ-LOOP-EXIT
 VARYING TEMPNUM
 FROM +1
 BY +1 UNTIL EIBRESP NOT EQUAL DFHRESP(NORMAL).
 STRING ’’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 IF EIBRESP NOT EQUAL DFHRESP(ITEMERR) THEN
 STRING ’<P>Error occurred reading TS queue.’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 D030-GET-TS-QUEUE-EXIT.
 D030-READ-LOOP.
 MOVE TSQ-LENGTH-VALUE TO TSQ-LENGTH
 EXEC CICS READQ TS
 QUEUE(ST-TSQ-NAME)
 INTO(QUEUE-TEXT)
 LENGTH(TSQ-LENGTH)
 ITEM(TEMPNUM)
 NOHANDLE
 END-EXEC
 IF EIBRESP = DFHRESP(NORMAL) THEN
 STRING ’’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING
 STRING QUEUE-TEXT
 DELIMITED BY SPACES
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING
 END-IF.
 D030-READ-LOOP-EXIT.
 E040-DELETE-BUILD.
 MOVE LOW-VALUE TO SW-DATA-CONTENT.
 STRING ’<HTML><HEAD><TITLE>NAME AND ADDRESS</TITLE></HEAD>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<IMG SRC="http://ladoga.sanjose.ibm.com/’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 STRING ’slwhtml/slwimg/cwmast.gif" ALT="CICSWEB Masthead">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 STRING ’<FORM METHOD=POST ACTION="/cgi-bin/REXXCIC3" >’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<INPUT TYPE="HIDDEN" NAME="function" VALUE="">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<INPUT TYPE="HIDDEN" NAME="handle" VALUE="">’
204 Accessing CICS Business Applications from the WWW

 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<P>Your shopping list has been deleted’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’</FORM>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 E040-DELETE-BUILD-EXIT.
 F050-INVALID-FUNCTION.
 STRING ’<HTML><HEAD><TITLE>Invalid function</TITLE></HEAD>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<IMG SRC="http://ladoga.sanjose.ibm.com/’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 STRING ’slwhtml/slwimg/cwmast.gif" ALT="CICSWEB Masthead">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 STRING ’<P>SWLIST2 did not recognise the function with’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<P> which it was called: *’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING SW-FUNCTION
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’*’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’</FORM>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 EXEC CICS RETURN END-EXEC.
 F050-INVALID-FUNCTION-EXIT.
 J070-ERROR.
 STRING ’<HTML><HEAD><TITLE>Error Detected </TITLE></HEAD>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’<IMG SRC="http://ladoga.sanjose.ibm.com/’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 STRING ’slwhtml/slwimg/cwmast.gif" ALT="CICSWEB Masthead">’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 STRING ’<P>SWLIST2 detected the following error whilst’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’ processing this list: <P>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
CICS/ESA State Management Sample 205

 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING MSG-TXT
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 STRING ’</FORM>’
 DELIMITED BY SIZE
 INTO SW-DATA-CONTENT
 WITH POINTER SW-TXT-PTR
 END-STRING.
 EXEC CICS RETURN END-EXEC.
 J070-ERROR-EXIT.

C.3 Assembler CICS/ESA State Management Program
 TITLE ’CICSSTAT - CICS/ESA SAMPLE STATE HANDLER - ASSEMB*
 LER’

* *
* MODULE NAME = CICSSTAT *
* *
* DESCRIPTIVE NAME = Module to handle CICS transactions that *
* wish to have state maintained on their *
* behalf. *
* This program offers non terminal-oriented *
* tasks, such as programs designed to interface *
* with the Web, a facility to allow one CICS *
* task to save information to be retrieved by *
* another task using a unique identifier which *
* is stored elsewhere, for example in a hidden *
* field in a form. *
* *
* The program can be run periodically to purge *
* state data which has "timed out" if required, *
* by running the CWBT transactions. *
* *
* The program can also be run to delete ALL *
* state data resources *
* *
* Allows callers to CREATE, RETRIEVE, UPDATE *
* and DESTROY state information *
* When called as transaction CWBP, purges all *
* state data which has not been updated for one *
* hour. *
* COPYRIGHT = NONE *
* *

*
* Commarea Structure
*
COMMAREA DSECT
COMM_START DS 0F
EYECATCH DS CL4
FUNCTION DS XL1
CREATE EQU X’C3’ * Create a new handle and state stg
RETRIEVE EQU X’D9’ * Retrieve state info for a handle
STORE EQU X’E2’ * Store state info for a handle
DESTROY EQU X’C4’ * Destroy handle and state stg
RETCODE DS XL1
GOODRC EQU X’0’
BADCOMRC EQU X’1’
INVFUNRC EQU X’2’
NOSTGRC EQU X’3’
NOMATRC EQU X’4’
TSWERRC EQU X’5’
LENGERR EQU X’6’
NOSTMPRC EQU X’7’
BADQNMRC EQU X’8’
TIMEFRC EQU X’9’
TSWER2RC EQU X’A’
RESERVED DS XL2
HANDLE DS F * Unique conversation id
USERDATA DS XL256 * User state information
COMLEN EQU *-COMM_START * Length of COMMAREA
206 Accessing CICS Business Applications from the WWW

*
*
R7 EQU 7
WK1 EQU 6
WK2 EQU 8
COMPTR EQU 5 Pointer to Commarea
ANCHOR_PTR EQU 10 Pointer to Anchor block
STATE_PTR EQU 12 Pointer to State Control Block
*
STATE_BLOCK DSECT State Control Block
STATE_EYECATCHER DS CL4
STATE_FORWARD_PTR DS F
STATE_BACKWARD_PTR DS F
STATE_HANDLE DS F
STATE_TIMESTAMP DS PL8
STATE_USER_DATA DS XL256
STATE_LEN EQU *-STATE_BLOCK

* This is the structure mapped on to our TS queue record *
* containing: *
* 1. Counter used to allocate unique IDs to state control *
* blocks. *
* 2. Anchors for the state control block *

ANCHOR_BLOCK DSECT
ANCHOR_EYECATCHER DS CL4
ANCHOR_COUNTER DS F Counter to generate unique handles
ANCHOR_FORWARD_PTR DS F Storage block chain forward ptr
ANCHOR_BACKWARD_PTR DS F Storage block chain backward ptr
ANCHOR_TIMESTAMP DS PL8 Time at which this anchor was created
ANCHOR_LEN EQU *-ANCHOR_BLOCK Length of anchor
 EJECT ,
DFHEISTG DSECT
*
* Working Storage
*
TEMP_TIME DS PL8
CURRENT_TIME DS PL8
TEMP_STATE_PTR DS F
MESSAGES DS CL80 TEMP STORE FOR MESSAGES
RESP DS 1F RESPONSES TO CICS COMMANDS
TRANID DS CL4 TRANSACTION IDENTIFIER
TSLEN DS H
ITEMNUM DS H
FREE_SAVE_R7 DS F
GETMAIN_LENGTH DS F
ANCHOR_STG DS CL(ANCHOR_LEN)
 EJECT ,
CICSSTAT CSECT
 XC MESSAGES,MESSAGES Clear message field

* Issue an ENQ so that we have the State Management lock *

 EXEC CICS ENQ RESOURCE(STATE_MANAGER) *
 LENGTH(L’STATE_MANAGER) *
 RESP(RESP)

* Call GETANCH to retrieve the TS record containing our anchor *
* information. If no address is returned, this must be the first *
* time we have been invoked, so call INIT_ANCHOR to get the *
* anchor block storage and initialise the TS record. *

 LA ANCHOR_PTR,ANCHOR_STG
 USING ANCHOR_BLOCK,ANCHOR_PTR
 USING STATE_BLOCK,STATE_PTR
 BAL R7,GETANCH Get the state control block anchor
 LTR ANCHOR_PTR,ANCHOR_PTR If the get for the anchor is OK
 BNZ CHKFUNC ..continue
 BAL R7,INIT_ANCHOR Else initialise the anchor
 LTR ANCHOR_PTR,ANCHOR_PTR If this fails as well........
 BZ ENDFUNC Give up !
CHKFUNC DS 0H
 CLC EIBTRNID,CWBT Is it the timeout transaction ?
 BE TIMEOUT_RTN ..Yes, go do it.
 CLC EIBTRNID,CWBP Is it the purge transaction ?
 BE PURGE_RTN ..Yes, go do it.

* If we get here, we have been linked to from another program. *
CICS/ESA State Management Sample 207

* See whether there is a commarea for us to use. *
* If not, there is an error, as we should always be called *
* a commarea. *

 EXEC CICS ADDRESS COMMAREA(COMPTR)
 USING COMMAREA,COMPTR
 LTR COMPTR,COMPTR
 BZ BADCOM

* Check the function code in the commarea to see why we have
* been invoked, and call the appropriate routine.

 L R7,=AL4(CREATE_RTN) If function is create
 CLI FUNCTION,CREATE invoke the CREATE routine
 BE CALLFUNC
*
 L R7,=AL4(RETRIEVE_RTN) If function is retrieve
 CLI FUNCTION,RETRIEVE invoke the RETRIEVE routine
 BE CALLFUNC
*
 L R7,=AL4(STORE_RTN) If function is store
 CLI FUNCTION,STORE invoke the STORE routine
 BE CALLFUNC
*
 L R7,=AL4(DESTROY_RTN) If function is destroy
 CLI FUNCTION,DESTROY invoke the destroy routine
 BE CALLFUNC

* We should not get here. If we do, issue an error message *

 B INVFUNC
CALLFUNC DS 0H
 BR R7 Invoke the requested routine
ENDFUNC DS 0H

* If an error was raised, issue message to operator *

 CLI RETCODE,GOODRC
 BE ENDNOERR
 EXEC CICS WRITE OPERATOR TEXT(MESSAGES) TEXTLENGTH(L’MESSAGES)
ENDNOERR DS 0H

* Issue an DEQ to release the State Management lock *

 EXEC CICS DEQ RESOURCE(STATE_MANAGER) *
 LENGTH(L’STATE_MANAGER) *
 RESP(RESP)
 EXEC CICS RETURN
 EJECT ,
CREATE_RTN DS 0H

* This routine does the following: *
* 1. Creates a new handle for a conversation *
* 2. Acquires storage for a new state block *
* *
* Increment the unique handle generator count by 1 *

 L WK1,ANCHOR_COUNTER Get the current count
 LA WK1,1(,WK1) Increment it by one
 ST WK1,ANCHOR_COUNTER Put it back
*
* Get storage for the new state block
*
 MVC GETMAIN_LENGTH,=AL4(STATE_LEN)
 EXEC CICS GETMAIN SHARED SET(STATE_PTR) RESP(RESP) *
 FLENGTH(GETMAIN_LENGTH) INITIMG(X’00’)
 CLC RESP,DFHRESP(NORMAL) Storage acquired OK ?
 BNE NOSTG No, check for no queue
**
* Add new state block to the chain *
**
 L WK1,ANCHOR_BACKWARD_PTR
 LTR WK1,WK1
 BNZ ADDELEM
**
* No elements currently in chain *
**
 ST STATE_PTR,ANCHOR_BACKWARD_PTR
208 Accessing CICS Business Applications from the WWW

 ST STATE_PTR,ANCHOR_FORWARD_PTR
 B CONTINUE
**
* Add element to existing chain *
**
ADDELEM DS 0H
 L WK1,ANCHOR_BACKWARD_PTR
 ST STATE_PTR,STATE_FORWARD_PTR-STATE_BLOCK(,WK1)
 XC STATE_FORWARD_PTR,STATE_FORWARD_PTR
 ST WK1,STATE_BACKWARD_PTR
 ST STATE_PTR,ANCHOR_BACKWARD_PTR
CONTINUE DS 0H
**
* Write the anchor block back to TS *
**
 BAL R7,REWRITE
**
* Initialise element *
**
 MVC STATE_EYECATCHER,STATE_EYE_INIT
 BAL R7,TIMESTAMP
 MVC STATE_HANDLE,ANCHOR_COUNTER
 MVC STATE_USER_DATA,USERDATA
**
* Put results into commarea to pass back to caller *
**
 MVC HANDLE,STATE_HANDLE
 MVI RETCODE,GOODRC
 B ENDFUNC
*
*
RETRIEVE_RTN DS 0H

* This routine does the following: *
* 1. Retrieve the state data for a handle passed in the *
* Commarea. *
* 2. Update the timestamp in the state block. *
* 3. Return the state data to the application *

 BAL R7,LOCATE_STATE_BLOCK
 LTR STATE_PTR,STATE_PTR
 BZ RETRIEVE_NO_MATCH
 BAL R7,TIMESTAMP
 MVC USERDATA,STATE_USER_DATA
 B ENDFUNC

* No match was found for the handle passed by the caller. *
* Either it has timed out, or there is a logic error. *

RETRIEVE_NO_MATCH DS 0H
 B NOMATCH
*
*
*
STORE_RTN DS 0H

* This routine does the following: *
* 1. Finds the requested handle *
* 2. Updates the timestamp *
* 3. Stores the new state data in the block *

 BAL R7,LOCATE_STATE_BLOCK
 LTR STATE_PTR,STATE_PTR
 BZ STORE_NO_MATCH
 BAL R7,TIMESTAMP
 MVC STATE_USER_DATA,USERDATA
 MVI RETCODE,GOODRC
 B ENDFUNC
STORE_NO_MATCH DS 0H
 B NOMATCH
*
DESTROY_RTN DS 0H

* This routine does the following: *
* 1. Finds the requested block *
* 2. Calls FREE_STATE_BLOCK to destroy the element. *
* 3. Freemains the state block *

CICS/ESA State Management Sample 209

 BAL R7,LOCATE_STATE_BLOCK
 LTR STATE_PTR,STATE_PTR
 BZ DESTROY_NO_MATCH
 BAL R7,FREE_STATE_BLOCK
 MVI RETCODE,GOODRC
 B ENDFUNC
DESTROY_NO_MATCH DS 0H
 B NOMATCH
TIMEOUT_RTN DS 0H

* Routine which loops through all the state control blocks *
* and deletes those which have been around for more than *
* 1 hour (change EXPIRY_INTERVAL if you wish to *
* customize this timeout value). *

 EXEC CICS ASKTIME ABSTIME(CURRENT_TIME) RESP(RESP)
 CLC RESP,DFHRESP(NORMAL) Timestamp made OK ?
 BNE TIMEFAIL
 L STATE_PTR,ANCHOR_FORWARD_PTR Initialise state ptr
TIMELOOP DS 0H
 LTR STATE_PTR,STATE_PTR If nulls, we are done
 BZ ALLDONE
 MVC TEMP_TIME,STATE_TIMESTAMP If (last update time +
 AP TEMP_TIME,EXPIRY_INTERVAL expiry interval)
 CP TEMP_TIME,CURRENT_TIME is less than current
 BNL TIMEOK then remove it
 MVC TEMP_STATE_PTR,STATE_FORWARD_PTR else remove this block
 BAL R7,FREE_STATE_BLOCK
 L STATE_PTR,TEMP_STATE_PTR
 B TIMELOOP
TIMEOK DS 0H
 L STATE_PTR,STATE_FORWARD_PTR
ALLDONE DS 0H
 B ENDFUNC
PURGE_RTN DS 0H

* Routine which loops through all the state control blocks *
* and deletes them, then deletes the anchor block. *

PURGE_LOOP DS 0H
 L STATE_PTR,ANCHOR_FORWARD_PTR Initialise state ptr
 LTR STATE_PTR,STATE_PTR
 BZ PURGE_DONE
 BAL R7,FREE_STATE_BLOCK
 B PURGE_LOOP
PURGE_DONE DS 0H
 EXEC CICS DELETEQ TS QUEUE(WEBQUEUE) RESP(RESP)
 CLC RESP,DFHRESP(NORMAL) Timestamp made OK ?
 BNE DELEFAIL
 EXEC CICS WRITE OPERATOR TEXT(TERMMSG) TEXTLENGTH(L’TERMMSG)
 B ENDFUNC
GETANCH DS 0H

* Retrieve the TS Q record containing our anchor block *
* if it’s not there, create a new one *

 SR WK1,WK1
 LA WK1,1(,WK1)
 STCM WK1,B’0011’,ITEMNUM
 MVC TSLEN,=AL2(ANCHOR_LEN)
 EXEC CICS READQ TS QUEUE(WEBQUEUE) INTO(ANCHOR_BLOCK) *
 LENGTH(TSLEN) ITEM(ITEMNUM) RESP(RESP)
 CLC RESP,DFHRESP(NORMAL) Record read OK ?
 BNE NOQUEUE No, check for no queue
 LA ANCHOR_PTR,ANCHOR_BLOCK
 BR R7
NOQUEUE DS 0H
 SR ANCHOR_PTR,ANCHOR_PTR
 CLC RESP,DFHRESP(QIDERR) No queue found ?
 BNE BADQNM No, unexpected error
 BR R7 Return to the caller
INIT_ANCHOR DS 0H
 LA ANCHOR_PTR,ANCHOR_STG

* This routine is responsible for acquiring and initialising *
* the state control block anchor. It is a TS record, *
* written the first time we are invoked. *

210 Accessing CICS Business Applications from the WWW

 XC ANCHOR_BLOCK,ANCHOR_BLOCK
 MVC ANCHOR_EYECATCHER,ANCHOR_EYE_INIT
 MVC TSLEN,=AL2(ANCHOR_LEN)
 EXEC CICS ASKTIME ABSTIME(ANCHOR_TIMESTAMP) RESP(RESP)
 EXEC CICS WRITEQ TS QUEUE(WEBQUEUE) RESP(RESP) *
 FROM(ANCHOR_BLOCK) *
 LENGTH(TSLEN)
 CLC RESP,DFHRESP(NORMAL) Record written OK ?
 BNE WRITERR No, check for no queue
 EXEC CICS WRITE OPERATOR TEXT(INITMSG) TEXTLENGTH(L’INITMSG)
 BR R7
WRITERR DS 0H
 SR ANCHOR_PTR,ANCHOR_PTR
 B TSWERR
 BR R7 Return to the caller
LOCATE_STATE_BLOCK DS 0H

* Subroutine to locate state block using handle from commarea *
* If we find it, load the address into STATE_PTR. Otherwise set *
* STATE_PTR to nulls before returning. *

 L STATE_PTR,ANCHOR_FORWARD_PTR
 LTR STATE_PTR,STATE_PTR See if list is empty
 BZ LOCATE_NO_MATCH
LOCATE_SEARCH_LOOP DS 0H
 L WK1,HANDLE
 C WK1,STATE_HANDLE
 BE LOCATE_FOUND
 L STATE_PTR,STATE_FORWARD_PTR
 LTR STATE_PTR,STATE_PTR
 BZ LOCATE_NO_MATCH
 B LOCATE_SEARCH_LOOP
LOCATE_FOUND DS 0H
 BR R7
LOCATE_NO_MATCH DS 0H
 SR STATE_PTR,STATE_PTR
 BR R7
FREE_STATE_BLOCK DS 0H

* Subroutine to free a state block, unchaining it from the list, *
* and then FREEMAIN the storage. *

 L WK1,STATE_FORWARD_PTR
 LTR WK1,WK1
 BZ FREE1
 MVC STATE_BACKWARD_PTR-STATE_BLOCK(4,WK1),STATE_BACKWARD_PTR
 B FREE2
FREE1 DS 0H
 L WK1,STATE_BACKWARD_PTR
 ST WK1,ANCHOR_BACKWARD_PTR
FREE2 DS 0H

* Sort out forward pointers *

 L WK1,STATE_BACKWARD_PTR
 LTR WK1,WK1
 BZ FREE3
 MVC STATE_FORWARD_PTR-STATE_BLOCK(,WK1),STATE_FORWARD_PTR
 B FREE4
FREE3 DS 0H
 L WK1,STATE_FORWARD_PTR
 ST WK1,ANCHOR_FORWARD_PTR
FREE4 DS 0H

* Freemain the state block storage *

 EXEC CICS FREEMAIN DATAPOINTER(STATE_PTR) RESP(RESP)
 ST R7,FREE_SAVE_R7 Save R7 across call
 BAL R7,REWRITE to update anchor
 L R7,FREE_SAVE_R7 Restore R7
 BR R7 Return

* Subroutine to timestamp a state block *

TIMESTAMP DS 0H
 EXEC CICS ASKTIME ABSTIME(STATE_TIMESTAMP) RESP(RESP)
 CLC RESP,DFHRESP(NORMAL) Timestamp made OK ?
 BNE NOSTMP No, raise error.
CICS/ESA State Management Sample 211

 BR R7
REWRITE DS 0H

* Subroutine to write updated anchor block back to TS *

 MVC ITEMNUM,=AL2(1)
 MVC TSLEN,=AL2(ANCHOR_LEN)
 EXEC CICS WRITEQ TS QUEUE(WEBQUEUE) RESP(RESP) *
 FROM(ANCHOR_BLOCK) *
 LENGTH(TSLEN) *
 ITEM(ITEMNUM) *
 REWRITE
 CLC RESP,DFHRESP(NORMAL) Record written OK ?
 BNE TSWERR No, raise error
 BR R7
 EJECT ,

* Error Routines *

BADCOM DS 0H DUPLICATE RECORD
 MVC MESSAGES,=CL(L’MESSAGES)’Invalid Commarea passed.’
 MVI RETCODE,BADCOMRC
 B ENDFUNC COMPLETE, GO FINISH
INVFUNC DS 0H DUPLICATE RECORD
 MVC MESSAGES,=CL(L’MESSAGES)’Invalid function passed.’
 MVI RETCODE,INVFUNRC
 B ENDFUNC COMPLETE, GO FINISH
BADQNM DS 0H
 MVC MESSAGES,=CL(L’MESSAGES)’Unable to retrieve state block *
 anchor.’
 MVI RETCODE,BADQNMRC
 B ENDFUNC
TSWERR DS 0H
 MVC MESSAGES,=CL(L’MESSAGES)’Initial TS write for state bloc*
 k anchor failed.’
 MVI RETCODE,TSWERRC
 B ENDFUNC
TSWERR2 DS 0H
 MVC MESSAGES,=CL(L’MESSAGES)’Update of anchor failed. ’
 MVI RETCODE,TSWER2RC
 B ENDFUNC
NOSTG DS 0H
 MVC MESSAGES,=CL(L’MESSAGES)’Getmain for state block failed.*
 ’
 B ENDFUNC
NOSTMP DS 0H
 MVC MESSAGES,=CL(L’MESSAGES)’Timestamp for state block faile*
 d’
 MVI RETCODE,NOSTMPRC
 B ENDFUNC
NOMATCH DS 0H
 MVC MESSAGES,=CL(L’MESSAGES)’State data could not be found f*
 or the handle supplied’
 MVI RETCODE,NOMATRC
 B ENDFUNC
LENGERR2 DS 0H
 MVC MESSAGES,=CL(L’MESSAGES)’Read from TSQ returned bad leng*
 th’
 SR ANCHOR_PTR,ANCHOR_PTR
 MVI RETCODE,LENGERR
 B ENDFUNC
TIMEFAIL DS 0H
 MVC MESSAGES,=CL(L’MESSAGES)’Unable to get current time. *
 ’
 B ENDFUNC
DELEFAIL DS 0H
 MVC MESSAGES,=CL(L’MESSAGES)’Unable to delete State Block An*
 chor. ’
 B ENDFUNC
*
*
* CONSTANTS
*
EXPIRY_INTERVAL DC XL8’00000000360000C’ * 1 hour in absolute time
ANCHOR_EYE_INIT DC CL4’SCBA’
STATE_EYE_INIT DC CL4’SCBE’
CWBP DC CL4’CWBP’
CWBT DC CL4’CWBT’
212 Accessing CICS Business Applications from the WWW

ANCHORID DC CL8’CICSSTAT’
WEBQUEUE DC CL8’CICSWEB ’
STATE_MANAGER DC CL13’STATE_MANAGER’
INITMSG DC CL80’State data manager CICSSTAT initialized’
TERMMSG DC CL80’State data manager CICSSTAT terminated’
*
 LTORG
 END
CICS/ESA State Management Sample 213

214 Accessing CICS Business Applications from the WWW

Appendix D. CICS/ESA Sockets Application Sample

This chapter contains the source code for the sample CICS/ESA Sockets sample.

 • C CGI script

 • COBOL CICS/ESA Web server application program

 • MVS JCL to compile a COBOL program

D.1 C CGI Script

This script is in two parts:

client.c is the main CGI script.

sockets.c contains sockets functions used by client.c.

D.1.1 client.c
/*
 * PROGRAM: client1.c
 *
 * DESCRIPTION: This is the client part of the CICS sockets web sample.
 * client1.c contains all the CGI code for the client. It
 * is linked with sockets.c to provide a CGI program which
 * can issues TCP/IP socket calls.
 *
 * This program sends an initial FORM to the web browser,
 * receives input from the web-browser, sends this information
 * to the server using socket calls, and then sends the info
 * from the server back to the web browser and waits for input
 * again.
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define LF 10
#define HTML_BREAK printf("<P>%c", LF);
typedef struct {
 char name[128];
 char val[128];
} entry;

typedef struct {
 char qfield[256];
 int qlen;
 char qname[256];
} fields;

static fields idxfields[] = { {"XTran", 4, "Tranid"},
 {"XAddr", 20, "Address"},
 {"XPort", 5, "Port"},
 {"", 0, ""}
 };

/* function prototypes */
void send_doc(int which);
void getword(char *word, char *line, char stop);
void plustospace(char *str);
char *do_socket_call(char *addr, char *port, char *tran, char *action,
 char *queue, char *qdata);

/*
 * getword()
 *
 * This function parses the HTML text received from the form, and returns
 * the next word (ie. up to the next ’stop’ character)
© Copyright IBM Corp. 1998 215

 *
 */
void getword(char *word, char *line, char stop)
{
 int x = 0, y;

 for (x=0; ((line[x]) && (line[x] != stop)); x++)
 word[x] = line[x];

 word[x] = ’\0’;
 if (line[x]) ++x;
 y = 0;

 while (line[y++] = line[x++]);
}

/*
 * plustospace()
 *
 * This function converts all ’+’ characters to spaces in the input text
 * from the form.
 *
 */
void plustospace(char *str)
{
 register int x;

 for (x=0; str[x];x++)
 if (str[x] == ’+’) str[x] = ’ ’;
}

/*
 * send_doc()
 *
 * Sends the initial HTML form
 *
 */
void send_doc(int which) {
 int x;

 printf("<TITLE>CICS Sockets CGI</TITLE>%c", LF);
 printf("<H1>CICS Sockets CGI</H1>%c", LF);
 HTML_BREAK
 printf("<HR>%c", LF);

 printf("Enter the tranid, host IP address and port to connect to:%c", LF);
 printf("<FORM ACTION=\"http://%s:%s%s\">%c", getenv("SERVER_NAME"),
 getenv("SERVER_PORT"), getenv("SCRIPT_NAME"), LF);

 HTML_BREAK

 printf("%s ", idxfields[0].qname);
 printf("<INPUT TYPE=\"text\" NAME=\"%s\" MAXLENGTH=\"%d\" SIZE=\"%d\">%c"
 ,idxfields[0].qfield, idxfields[0].qlen
 ,idxfields[0].qlen+1,LF);

 printf(" %s ", idxfields[1].qname);
 printf("<INPUT TYPE=\"text\" NAME=\"%s\" MAXLENGTH=\"%d\" SIZE=\"%d\">%c"
 ,idxfields[1].qfield, idxfields[1].qlen
 ,idxfields[1].qlen,LF);

 printf(" %s ", idxfields[2].qname);
 printf("<INPUT TYPE=\"text\" NAME=\"%s\" MAXLENGTH=\"%d\" SIZE=\"%d\">%c"
 ,idxfields[2].qfield, idxfields[2].qlen
 ,idxfields[2].qlen,LF);

 printf("<INPUT TYPE=\"hidden\" NAME=\"XQueue\" VALUE=\"\">%c",LF);

 HTML_BREAK
 printf("<HR>%c", LF);
 HTML_BREAK

 printf("<INPUT TYPE=\"submit\" VALUE=\"Click here to send request\">%c", LF);
 printf(" <INPUT TYPE=\"reset\" VALUE=\"Clear entry\">%c", LF);
 printf("</FORM>%c", LF);

}

216 Accessing CICS Business Applications from the WWW

main(int argc, char *argv[]) {
 char message[2001];
 char CICSTran[5];
 char CICSAddr[21];
 char CICSPort[6];
 char CICSAction[7];
 char CICSQueue[9];
 char CICSQData[51];
 entry entries[256];
 register int x,m=0;
 char *cl;
 char *tp;
 char returnstr[1024], typestr[4098], commandstr[8192], serverstr[256];

 printf("Content-type: text/html%c%c",LF,LF);

 cl = getenv("QUERY_STRING");

 if((!cl) || (!cl[0])) {
 send_doc(0);
 exit(1);
 }

 if (cl[0] != ’\0’)
 {
 getword(returnstr, cl, ’&’);
 getword(typestr, returnstr, ’=’);
 strcpy(CICSTran, returnstr);

 getword(returnstr, cl, ’&’);
 getword(typestr, returnstr, ’=’);
 strcpy(CICSAddr, returnstr);

 getword(returnstr, cl, ’&’);
 getword(typestr, returnstr, ’=’);
 strcpy(CICSPort, returnstr);

 getword(returnstr, cl, ’&’);
 getword(typestr, returnstr, ’=’);
 strcpy(CICSAction, returnstr);

 getword(returnstr, cl, ’&’);
 getword(typestr, returnstr, ’=’);
 strcpy(CICSQueue, returnstr);

 getword(returnstr, cl, ’&’);
 getword(typestr, returnstr, ’=’);
 plustospace(returnstr);
 strcpy(CICSQData, returnstr);

 }

 printf("<HTML>%c<BODY>%c", LF,LF);
 printf("<H1>Query Results</H1>%c", LF);
 HTML_BREAK

 CICSTran[4]=’\0’; /* ensure null-termination of strings */
 CICSAddr[20]=’\0’;
 CICSPort[5]=’\0’;
 CICSAction[1]=’\0’;
 CICSQueue[8]=’\0’;
 CICSQData[50]=’\0’;

 /*
 * Here we call do_socket_call() passing the user information. This
 * passes the info the server, and returns the HTML information which
 * the server sends back.
 * This return info is then displayed.
 * The server has control over what is sent back and hence what is
 * displayed.
 */
 strcpy(message, do_socket_call((char *)CICSAddr, (char *)CICSPort,
 (char *)CICSTran, (char *)CICSAction,
 (char *)CICSQueue, (char *)CICSQData));

 printf("%s %c", message, LF);
CICS/ESA Sockets Application Sample 217

 printf("</BODY>%c</HTML>", LF);
}

D.1.2 sockets.c
/*
 * PROGRAM: sockets.c
 *
 * DESCRIPTION: This code provides the sockets functions which are called
 * to converse with the CICS server transaction
 *
 */

 /* HEADER FILES */
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h> /* Socket details */
#include <stdio.h>
#include <sys/errno.h> /* To enable network error trapping */

#include <string.h>

 /* CONSTANTS */
#define io_buf_size 2001 /* data buffer for socket comms, size */
#define recv_flags 0 /* flags parameter on recv() */
#define send_flags 0 /* flags parameter on send() */
#define socket_protocol 0 /* protocol parameter on socket() */
#define call_failed -1 /* most TCP calls return -1 if failed */

struct hostent *gethostbyname(char *name);
int clients_sock_desc; /* Client’s socket */
struct hostent *hostnm_info; /* Server hostname information */
struct sockaddr_in server_inetaddr; /* Server internet address */
unsigned short clients_port; /* Port number client will bind to */

char transid[5];
char tsqueue[9];
char tsact[2];
char tsqdata[51];
char padding[50] = " ";

int socket(int domain, int type, int protocol);
int connect(int s, struct sockaddr *name, int namelen);
int close(int s);
void report_nerrno(int error_number);
char *do_read();
void shut_down();

void exit(int status);

int atoi(char *string);

/*
 * do_socket_call()
 *
 * Function called from main() to send data to server, and await reply
 */
char *do_socket_call(char *addr, char *port, char *tran, char *action,
 char *queue, char *qdata)
{

 char input[10];
 int recv_len;

 clients_port = (unsigned short) atoi(port);
 server_inetaddr.sin_family = AF_INET;
 server_inetaddr.sin_port = htons(clients_port);
 server_inetaddr.sin_addr.s_addr = (inet_addr(addr));

 strcpy(transid,tran);
 transid[4] = ’\0’;

 strcpy(tsact,action);
 tsact[1] = ’\0’;

 strcpy(tsqueue,queue);
 tsqueue[8] = ’\0’;
218 Accessing CICS Business Applications from the WWW

 strcpy(tsqdata,qdata);
 tsqdata[50] = ’\0’;

 return (char *)do_read();
}

/*
 * startup()
 *
 * Initialise the connection with the CICS server, and send the initial
 * data from the client.
 * The limit is 30 bytes on the first send. If the user requested a WRITE
 * operation, then there is more data, so we must perform further socket
 * calls to transfer the info.
 */
void startup(char *start_buf)
{
 char io_buf[io_buf_size];
 int num_bytes;
 int io_len;

 unsigned char *x;
 int y;

 /* Proper error conditions need to be handled here */

 if ((clients_sock_desc =
 socket(AF_INET,SOCK_STREAM,socket_protocol)) == call_failed)
 {
 printf("Problem with socket()\n");
 report_nerrno(errno);
 exit(3);
 }

 if (connect(clients_sock_desc, (struct sockaddr *) &server_inetaddr,
 sizeof(server_inetaddr)) == call_failed)
 {
 printf("Problem with connect()\n");
 printf("errno = %d\n",errno);
 report_nerrno(errno);
 exit(4);
 }

 /* printf("\n-------> Connection opened.\n\n"); */

 strcpy(io_buf,start_buf);
 io_len = strlen(io_buf);

 if (send(clients_sock_desc,io_buf,io_len,send_flags) == call_failed)
 {
 printf("Problem with send()\n");
 report_nerrno(errno);
 exit(5);
 }

 return;

} /* end of startup() */

/*
 * do_read()
 *
 * Get the HTML information back from the CICS server transaction
 */
char *do_read()
{
 /* function to read msg msg_num for user to_user */
 char from_user[9];
 char to_user[9];
 char subject[21];
 char message[433];
 char rcv_buf[io_buf_size+1];
 char io_buf[io_buf_size+1];
 int num_bytes;
 int io_len;
 char *next_field;
CICS/ESA Sockets Application Sample 219

 strcpy(io_buf,transid);
 strcat(io_buf,",");
 strncat(tsact,padding,(1-strlen(tsact)));
 strcat(io_buf,tsact);
 strncat(tsqueue,padding,(8-strlen(tsqueue)));
 strcat(io_buf,tsqueue);

 startup(io_buf);

 if (!strcmp(tsact,"W"))
 {
 /* send MORE bytes to the server - the data to write to the queue */
 /* first, receive a response from the server (help keep things in */
 /* sync, and also flushes the buffers correctly :-) */

 num_bytes = recv(clients_sock_desc,rcv_buf,io_buf_size,recv_flags);
 if (num_bytes == call_failed)
 {
 printf("Problem with recv()\n");
 report_nerrno(errno);
 exit(6);
 }

 strncat(tsqdata,padding,(50-strlen(tsqdata)));
 strcpy(io_buf,tsqdata);
 io_len = strlen(io_buf);
 if (send(clients_sock_desc,io_buf,io_len,send_flags) == call_failed)
 {
 printf("Problem with send()\n");
 report_nerrno(errno);
 exit(5);
 }

 num_bytes = recv(clients_sock_desc,rcv_buf,io_buf_size,recv_flags);
 if (num_bytes == call_failed)
 {
 printf("Problem with recv()\n");
 report_nerrno(errno);
 exit(6);
 }

 }

 num_bytes = recv(clients_sock_desc,rcv_buf,io_buf_size,recv_flags);
 if (num_bytes == call_failed)
 {
 printf("Problem with recv()\n");
 report_nerrno(errno);
 exit(6);
 }

 shut_down();
 return(rcv_buf);
}

/*
 * shut_down()
 *
 * closes the connection with the CICS server
 */
void shut_down()
{
 if ((close(clients_sock_desc)) == call_failed)
 {
 printf("Problem with close()\n");
 report_nerrno(errno);
 exit(8);
 }
 return;
}

/* Reports network errors */
void report_nerrno(int error_number)
{
 switch (error_number)
 {
220 Accessing CICS Business Applications from the WWW

 case ENOTSOCK :
 printf("ENOTSOCK - invalid socket descriptor\n");
 break;
 case EOPNOTSUPP :
 printf("EOPNOTSUPP - socket descriptor does not support listen()\n");
 break;
 case EADDRINUSE :
 printf("EADDRINUSE - address already in use\n");
 break;
 case EADDRNOTAVAIL :
 printf("EADDRNOTAVAIL - address specified invalid on this host\n");
 break;
 case EAFNOSUPPORT :
 printf("EAFNOSUPPORT - address family is not supported\n");
 break;
 case EINVAL :
 printf("EINVAL - socket already bound/unexpected namelen length\n");
 break;
 case ENOBUFS :
 printf("ENOBUFS - no buffer space available\n");
 break;
 case EPROTONOSUPPORT :
 printf("EPROTONOSUPPORT - protocol unsupported by this\n");
 printf(" domain/socket type\n");
 break;
 case EPROTOTYPE :
 printf("EPROTOTYPE - wrong type of protocol for this socket\n");
 break;
 case EWOULDBLOCK :
 printf("EWOULDBLOCK - the socket is in nonblocking mode\n");
 printf(" & no data is available to read\n");
 break;
 case EALREADY :
 printf("EALREADY - the socket is nonblocking & a previous\n");
 printf(" connection attempt is incomplete\n");
 break;
 case ENOTCONN :
 printf("ENOTCONN - the socket is not connected\n");
 break;
 case ECONNREFUSED :
 printf("ECONNREFUSED - the connection request was rejected by\n");
 printf(" the destination host\n");
 break;
 case EINPROGRESS :
 printf("EINPROGRESS - the socket is marked non-blocking & the\n");
 printf(" connection cannot be made immediately\n");
 printf(" - this is not an error condition\n");
 break;
 case EISCONN :
 printf("EISCONN - the socket is already connected\n");
 break;
 case ENETUNREACH :
 printf("ENETUNREACH - network cannot be reached from this host\n");
 break;
 case ETIMEDOUT :
 printf("ETIMEDOUT - the connection establishment timed out\n");
 printf(" before a connection was made\n");
 }
}

D.2 COBOL CICS/ESA Web Server Application Program
 * $SEG(TCPSERV1)
 --
 * *
 * MODULE NAME : TCPSERV1 *
 * *
 * DESCRIPTION : *
 * *
 * THIS IS THE SERVER PART OF THE CICS SOCKETS WEB SAMPLE. *
 * THIS TRANSACTION IS STARTED BY THE CICS SOCKETS *
 * LISTENER TRANSACTION WHEN A REQUEST IS RECEIVED FROM *
 * THE WEB CLIENT PROGRAM. IT DECODES THE INFORMATION ON *
 * THE REQUEST AND PERFORMS THE REQUIRED ACTION ON THE *
 * SPECIFIED CICS TS QUEUE. *
 * *
CICS/ESA Sockets Application Sample 221

 * WHEN THE ACTION HAS COMPLETED, THIS TRANSACTION SENDS *
 * BACK HTML DATA TO THE CLIENT, WHICH CONTAINS THE *
 * RESULT OF THE ACTION. THE CLIENT CAN THEN DISPLAY *
 * THIS DATA ON THE WEB BROWSER. *
 * *
 * THE SOCKET CALLS ISSUED BY THIS PROGRAM ARE: *
 * *
 * . TAKESOCKET - ACQUIRES THE SOCKET PASSED BY THE *
 * LISTENER TRANSACTION *
 * *
 * . RECEIVE - GET MORE DATA FROM THE CLIENT *
 * *
 * . WRITE - SEND HTML DATA BACK TO CLIENT *
 * *
 * *
 --
 *
 IDENTIFICATION DIVISION.
 PROGRAM-ID. TCPSERV1.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 *
 WORKING-STORAGE SECTION.
 77 FIRST-REQUEST PIC X(24)
 VALUE IS ’ FIRST REQUEST ’.
 77 SECOND-REQUEST PIC X(24)
 VALUE IS ’ SECOND REQUEST ’.
 77 TAKE-ERR PIC X(24)
 VALUE IS ’ TAKESOCKET FAIL ’.
 77 TAKE-SUCCESS PIC X(24)
 VALUE IS ’ TAKESOCKET SUCCESSFUL ’.
 77 SOCK-SAME PIC X(24)
 VALUE IS ’ TAKESOCKET SOCKET SAME’.
 77 SOCK-DIFF PIC X(24)
 VALUE IS ’ TAKESOCKET SOCKET DIFF’.
 77 READ-ERR PIC X(24)
 VALUE IS ’ READ SOCKET FAIL ’.
 77 READ-SUCCESS PIC X(24)
 VALUE IS ’ READ SOCKET SUCCESSFUL ’.
 77 WRITE-ERR PIC X(24)
 VALUE IS ’ WRITE SOCKET FAIL ’.
 77 WRITE-END-ERR PIC X(32)
 VALUE IS ’ WRITE SOCKET FAIL - PGM END MSG’.
 77 WRITE-SUCCESS PIC X(25)
 VALUE IS ’ WRITE SOCKET SUCCESSFUL ’.
 77 CLOS-ERR PIC X(24)
 VALUE IS ’ CLOSE SOCKET FAIL ’.
 77 CLOS-SUCCESS PIC X(24)
 VALUE IS ’CLOSE SOCKET SUCCESSFUL ’.
 77 INVREQ-ERR PIC X(24)
 VALUE IS ’INTERFACE IS NOT ACTIVE ’.
 77 IOERR-ERR PIC X(24)
 VALUE IS ’IOERR OCCURRS ’.
 77 IOCTL-ERR PIC X(24)
 VALUE IS ’IOCTL ERROR ’.
 77 LENGERR-ERR PIC X(24)
 VALUE IS ’LENGERR ERROR ’.
 77 ITEMERR-ERR PIC X(24)
 VALUE IS ’ITEMERR ERROR ’.
 77 NOSPACE-ERR PIC X(24)
 VALUE IS ’NOSPACE CONDITION ’.
 77 QIDERR-ERR PIC X(24)
 VALUE IS ’QIDERR CONDITION ’.
 77 ENDDATA-ERR PIC X(30)
 VALUE IS ’RETRIEVE DATA CAN NOT BE FOUND’.
 77 WRKEND PIC X(20)
 VALUE ’CONNECTION END ’.

 01 WRKMSG.
 02 WRKM PIC X(15)
 VALUE IS ’DATA WRITTEN OK’.

 01 MSG-IN.
 02 QUEUE-ACTION PIC X.
 02 QUEUE-ID PIC X(8).

 01 NEW-TASK-START.
 02 TITLE1 PIC X(32)
222 Accessing CICS Business Applications from the WWW

 VALUE IS ’<TITLE>CICS Sockets CGI</TITLE>’.
 02 FORM1.
 03 FORM1-PART1 PIC X(6)
 VALUE IS ’<FORM ’.
 03 FORM1-PART2 PIC X(37)
 VALUE IS ’ACTION="http://fussy.hursley.ibm.com:’.
 03 FORM1-PART3 PIC X(21)
 VALUE IS ’80/cgi-bin/cicscgi">’.

 02 HIDDEN1.
 03 TYPE1 PIC X(21)
 VALUE IS ’<INPUT TYPE="hidden" ’.
 03 NAME1 PIC X(13)
 VALUE IS ’NAME="XTran" ’.
 03 VALUE1 PIC X(13)
 VALUE IS ’VALUE="TCP4">’.
 02 HIDDEN2.
 03 TYPE2 PIC X(21)
 VALUE IS ’<INPUT TYPE="hidden" ’.
 03 NAME2 PIC X(13)
 VALUE IS ’NAME="XAddr" ’.
 03 VALUE2 PIC X(20)
 VALUE IS ’VALUE="9.20.2.19">’.
 02 HIDDEN3.
 03 TYPE3 PIC X(21)
 VALUE IS ’<INPUT TYPE="hidden" ’.
 03 NAME3 PIC X(13)
 VALUE IS ’NAME="XPort" ’.
 03 VALUE3 PIC X(13)
 VALUE IS ’VALUE="3456">’.
 02 HR1 PIC X(4)
 VALUE IS ’<HR>’.
 02 MSGTEXT1 PIC X(22)
 VALUE IS ’Greetings from CICS<P>’.
 02 MSGTEXT2.
 03 TEXT2-1 PIC X(8)
 VALUE IS ’Action:’.
 03 TEXT2-2 PIC X(23)
 VALUE IS ’<select name="Action">’.
 03 TEXT2-3 PIC X(14)
 VALUE IS ’<OPTION>Read’.
 03 TEXT2-4 PIC X(15)
 VALUE IS ’<OPTION>Write’.
 03 TEXT2-5 PIC X(16)
 VALUE IS ’<OPTION>Delete’.
 03 TEXT2-6 PIC X(15)
 VALUE IS ’</select><p>’.
 02 MSGTEXT3.
 03 TEXT3-1 PIC X(31)
 VALUE IS ’Queue Name <INPUT TYPE="text"’.
 03 TEXT3-2 PIC X(26)
 VALUE IS ’ NAME="Queue" SIZE="10" ’.
 03 TEXT3-3 PIC X(20)
 VALUE IS ’ MAXLENGTH="8"><P> ’.
 02 MSGTEXT4.
 03 TEXT4-1 PIC X(31)
 VALUE IS ’Queue Data <INPUT TYPE="text"’.
 03 TEXT4-2 PIC X(26)
 VALUE IS ’ NAME="QData" SIZE="50" ’.
 03 TEXT4-3 PIC X(16)
 VALUE IS ’ MAXLENGTH="50"’.
 03 TEXT4-4 PIC X(8)
 VALUE IS ’ VALUE="’.
 03 TSQUEUE-DATA PIC X(50) VALUE IS ’"’.
 03 TEXT4-5 PIC X(8)
 VALUE IS ’"><P>’.

 02 HR2 PIC X(8)
 VALUE IS ’ <HR> ’.
 02 BUTTON1.
 03 BUTT1-1 PIC X(21)
 VALUE IS ’<INPUT TYPE="submit" ’.
 03 BUTT1-2 PIC X(38)
 VALUE IS ’ VALUE="Click here to send request">’.
 02 BUTTON2.
 03 BUTT2-1 PIC X(20)
 VALUE IS ’<INPUT TYPE="reset" ’.
 03 BUTT2-2 PIC X(22)
CICS/ESA Sockets Application Sample 223

 VALUE IS ’ VALUE="Clear entry">’.
 02 FORM2 PIC X(8)
 VALUE IS ’</FORM>’.

 * program’s variables *

 77 TCP-TOKEN PIC X(16) VALUE ’TCPIPIUCVSTREAMS’.
 77 TOEBCDIC-TOKEN PIC X(16) VALUE ’TCPIPTOEBCDICXLT’.
 77 TOASCII-TOKEN PIC X(16) VALUE ’TCPIPTOASCIIXLAT’.
 77 TAKE-SOCKET PIC 9(8) BINARY.
 77 SOCKID PIC 9(4) BINARY.
 77 SOCKID-FWD PIC 9(8) BINARY.
 77 TEMP-SOCK PIC 9(8) BINARY.
 77 ERRNO PIC 9(8) BINARY.
 77 RETCODE PIC S9(8) BINARY.
 77 AF-INET PIC 9(8) BINARY VALUE 2.
 77 TCP-BUF PIC X(2000) VALUE IS SPACES.
 77 TCPLENG PIC 9(8) BINARY.
 77 MAX-MSG-LEN PIC 9(8) BINARY VALUE 50.
 77 RECV-FLAG PIC 9(8) BINARY VALUE 0.
 77 CLENG PIC S9(4) COMP.

 77 QUEUE-DATA PIC X(50) VALUE IS SPACES.
 77 QUEUE-DATA-LEN PIC S9(4) COMP VALUE 50.

 01 ZERO-PARM PIC X(16) VALUE LOW-VALUES.
 01 DUMMY-MASK REDEFINES ZERO-PARM.
 05 DUMYMASK PIC X(8).
 05 ZERO-FLD-8 PIC X(8).
 01 ZERO-FLD REDEFINES ZERO-PARM.
 05 ZERO-FWRD PIC 9(8) BINARY.
 05 ZERO-HWRD PIC 9(4) BINARY.
 05 ZERO-DUM PIC X(10).

 77 CICS-MSG-AREA PIC X(100).
 01 COMMAND.
 05 INITAPI-CMD PIC S9(4) BINARY VALUE 0.
 05 CLOSE-CMD PIC S9(4) BINARY VALUE 3.
 05 CONNECT-CMD PIC S9(4) BINARY VALUE 4.
 05 FCNTL-CMD PIC S9(4) BINARY VALUE 5.
 05 IOCTL-CMD PIC S9(4) BINARY VALUE 12.
 05 READ-CMD PIC S9(4) BINARY VALUE 14.
 05 RECV-CMD PIC S9(4) BINARY VALUE 16.
 05 SEND-CMD PIC S9(4) BINARY VALUE 20.
 05 SEND-TO-CMD PIC S9(4) BINARY VALUE 22.
 05 WRITE-CMD PIC S9(4) BINARY VALUE 26.
 05 GETCLIENT-ID-CMD PIC S9(4) BINARY VALUE 30.
 05 GIVESOCKET-CMD PIC S9(4) BINARY VALUE 31.
 05 TAKESOCKET-CMD PIC S9(4) BINARY VALUE 32.
 *
 01 CLIENTID-LSTN.
 05 CID-DOMAIN-LSTN PIC 9(8) BINARY.
 05 CID-NAME-LSTN PIC X(8).
 05 CID-SUBTASKNAME-LSTN PIC X(8).
 05 CID-RES-LSTN PIC X(20).

 01 CLIENTID-APPL.
 05 CID-DOMAIN-APPL PIC 9(8) BINARY.
 05 CID-NAME-APPL PIC X(8).
 05 CID-SUBTASKNAME-APPL PIC X(8).
 05 CID-RES-APPL PIC X(20).

 01 TCPSOCKET-PARM.
 05 GIVE-TAKE-SOCKET PIC 9(8) BINARY.
 05 LSTN-NAME PIC X(8).
 05 LSTN-SUBTASKNAME PIC X(8).
 05 CLIENT-IN-DATA PIC X(100).
 05 SOCKADDR-IN.
 10 SIN-FAMILY PIC 9(4).
 10 SIN-PORT PIC 9(4).
 10 SIN-ADDR PIC 9(8).
 10 SIN-ZERO PIC X(8).

 PROCEDURE DIVISION.
224 Accessing CICS Business Applications from the WWW

 EXEC CICS HANDLE CONDITION INVREQ (INVREQ-ERR-SEC)
 IOERR (IOERR-SEC)
 ENDDATA (ENDDATA-SEC)
 LENGERR (LENGERR-SEC)
 NOSPACE (NOSPACE-ERR-SEC)
 QIDERR (QIDERR-SEC)
 ITEMERR (ITEMERR-SEC)
 END-EXEC.

 PERFORM INITIAL-SEC THRU INITIAL-SEC-EXIT.
 PERFORM TAKESOCKET-SEC THRU TAKESOCKET-SEC-EXIT.

 CLOSE-SOCK.

 * *
 * CLOSE ’accept descriptor’ *
 * *

 CALL ’EZACICAL’ USING TCP-TOKEN CLOSE-CMD SOCKID ZERO-FLD-8
 ERRNO RETCODE.

 IF RETCODE < 0 THEN
 MOVE CLOS-ERR TO CICS-MSG-AREA
 ELSE
 MOVE CLOS-SUCCESS TO CICS-MSG-AREA.
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 PGM-EXIT.

 MOVE SPACES TO CICS-MSG-AREA.
 MOVE ’END OF TCPSCOBC PROGRAM’ TO CICS-MSG-AREA.
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
 EXEC CICS RETURN END-EXEC.

 *
 * RECEIVE PASSED PARAMETERS *
 *

 INITIAL-SEC.

 MOVE SPACES TO CICS-MSG-AREA.
 MOVE LENGTH OF CICS-MSG-AREA TO CLENG.
 MOVE ’TCPC TRANSACTION START UP ’ TO CICS-MSG-AREA.
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 MOVE LENGTH OF TCPSOCKET-PARM TO CLENG.

 EXEC CICS RETRIEVE INTO(TCPSOCKET-PARM) LENGTH(CLENG)
 END-EXEC.

 MOVE CLIENT-IN-DATA TO MSG-IN.

 INITIAL-SEC-EXIT.
 EXIT.

 RECV-CLIENT.

 * *
 * Issue an acknowledgement back to the client - he’s waiting *
 * on this before he sends me more data. *
 * *
 * Issue ’RECVFROM’ call to receive more information from the *
 * client program. *
 * *

 MOVE SPACES TO TCP-BUF.
 MOVE WRKMSG TO TCP-BUF.
 MOVE LENGTH OF TCP-BUF TO TCPLENG.

 CALL ’EZACIC04’ USING TOASCII-TOKEN TCP-BUF TCPLENG.

 CALL ’EZACICAL’ USING TCP-TOKEN WRITE-CMD SOCKID TCPLENG
 ZERO-FWRD ZERO-PARM TCP-BUF ERRNO RETCODE.

 IF RETCODE < 0 THEN
CICS/ESA Sockets Application Sample 225

 MOVE WRITE-ERR TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
 GO TO PGM-EXIT.

 * --- now to the receive

 MOVE LOW-VALUES TO TCP-BUF.
 MOVE MAX-MSG-LEN TO TCPLENG.
 CALL ’EZACICAL’ USING TCP-TOKEN RECV-CMD SOCKID ZERO-FWRD
 RECV-FLAG TCPLENG SOCKADDR-IN TCP-BUF
 ERRNO RETCODE.

 IF RETCODE < 0 THEN
 MOVE READ-ERR TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
 GO TO PGM-EXIT
 ELSE
 MOVE SPACES TO CICS-MSG-AREA
 MOVE READ-SUCCESS TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 CALL ’EZACIC05’ USING TOEBCDIC-TOKEN TCP-BUF TCPLENG.

 RECV-CLIENT-EXIT.
 EXIT.

 * *
 * Perform TCP SOCKET functions by passing socket command to *
 * TCPRMCAL routine. SOCKET command are translated to pre- *
 * define integer. *
 * *

 TAKESOCKET-SEC.

 * *
 * Issue ’TAKESOCKET’ call (integer 32) to acquire a socket *
 * which was given by LISTERN program. *
 * *

 MOVE AF-INET TO CID-DOMAIN-LSTN CID-DOMAIN-APPL.

 MOVE LSTN-NAME TO CID-NAME-LSTN.
 MOVE LSTN-SUBTASKNAME TO CID-SUBTASKNAME-LSTN.
 MOVE GIVE-TAKE-SOCKET TO TAKE-SOCKET SOCKID SOCKID-FWD.
 MOVE GIVE-TAKE-SOCKET TO TEMP-SOCK.

 CALL ’EZACICAL’ USING TCP-TOKEN TAKESOCKET-CMD ZERO-HWRD
 CLIENTID-LSTN TAKE-SOCKET SOCKID-FWD
 ERRNO RETCODE.

 IF TAKE-SOCKET NOT EQUAL TEMP-SOCK THEN
 MOVE SOCK-DIFF TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
 GO TO PGM-EXIT
 ELSE
 MOVE SPACES TO CICS-MSG-AREA
 MOVE SOCK-SAME TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 IF SOCKID-FWD NOT EQUAL TEMP-SOCK THEN
 MOVE SOCK-DIFF TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
 GO TO PGM-EXIT
 ELSE
 MOVE SPACES TO CICS-MSG-AREA
 MOVE SOCK-SAME TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 IF RETCODE < 0 THEN
 MOVE TAKE-ERR TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
 GO TO PGM-EXIT
 ELSE
 MOVE SPACES TO CICS-MSG-AREA
 MOVE TAKE-SUCCESS TO CICS-MSG-AREA
226 Accessing CICS Business Applications from the WWW

 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 *
 * WE MUST LOOK AT THE DATA FROM THE CLIENT, AND DECIDE
 * WHETHER TO:
 *
 * A) SEND BACK INITIAL PANEL, OR
 * B) READ QUEUE DATA AND RETURN DATA, OR
 * C) WRITE QUEUE DATA TO SPECIFIED TS QUEUE, OR
 * D) DELETE THE SPECIFIED QUEUE.
 *
 *
 * SO THE FIRST PART OF THE ’IF’ CLAUSE IS EXECUTED INITIALLY,
 * AND THE SECOND PART EXECUTED WHEN A QUEUEID IS SPECIFIED
 *

 IF QUEUE-ID = SPACES THEN
 MOVE FIRST-REQUEST TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
 ELSE
 IF QUEUE-ACTION = ’R’ THEN
 MOVE MSG-IN TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
 PERFORM READ-QUEUE THRU READ-QUEUE-EXIT
 ELSE
 IF QUEUE-ACTION = ’W’ THEN
 MOVE MSG-IN TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
 PERFORM RECV-CLIENT THRU RECV-CLIENT-EXIT
 MOVE TCP-BUF TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
 PERFORM WRITE-QUEUE THRU WRITE-QUEUE-EXIT
 ELSE
 MOVE MSG-IN TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
 PERFORM DELETE-QUEUE THRU DELETE-QUEUE-EXIT.

 MOVE SPACES TO TCP-BUF.
 MOVE NEW-TASK-START TO TCP-BUF.
 MOVE LENGTH OF TCP-BUF TO TCPLENG.

 MOVE TCP-BUF TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT

 CALL ’EZACIC04’ USING TOASCII-TOKEN TCP-BUF TCPLENG.

 CALL ’EZACICAL’ USING TCP-TOKEN WRITE-CMD SOCKID TCPLENG
 ZERO-FWRD ZERO-PARM TCP-BUF ERRNO RETCODE.

 IF RETCODE < 0 THEN
 MOVE WRITE-ERR TO CICS-MSG-AREA
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT
 GO TO PGM-EXIT.

 TAKESOCKET-SEC-EXIT.
 EXIT.

 * READ QUEUE FOR CLIENT AND SEND HIM THE INFO.

 READ-QUEUE.

 EXEC CICS READQ TS QUEUE(QUEUE-ID)
 INTO(QUEUE-DATA) LENGTH(QUEUE-DATA-LEN)
 ITEM(1)
 END-EXEC.

 MOVE QUEUE-DATA TO TSQUEUE-DATA.
 MOVE TSQUEUE-DATA TO CICS-MSG-AREA.
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.

 READ-QUEUE-EXIT.
 EXIT.

CICS/ESA Sockets Application Sample 227

 * WRITE QUEUE DATA FOR CLIENT

 WRITE-QUEUE.

 EXEC CICS WRITEQ TS QUEUE(QUEUE-ID)
 FROM(TCP-BUF) LENGTH(QUEUE-DATA-LEN)
 END-EXEC.

 WRITE-QUEUE-EXIT.
 EXIT.

 * DELETE QUEUE FOR CLIENT

 DELETE-QUEUE.

 EXEC CICS DELETEQ TS QUEUE(QUEUE-ID)
 END-EXEC.

 DELETE-QUEUE-EXIT.
 EXIT.

 * WRITE OUT TO CSMT LOG

 WRITE-CICS.
 MOVE LENGTH OF CICS-MSG-AREA TO CLENG.
 EXEC CICS WRITEQ TD QUEUE(’CSMT’) FROM(CICS-MSG-AREA)
 LENGTH(CLENG) NOHANDLE
 END-EXEC.

 MOVE SPACES TO CICS-MSG-AREA.

 WRITE-CICS-EXIT.
 EXIT.

 INVREQ-ERR-SEC.
 MOVE INVREQ-ERR TO CICS-MSG-AREA.
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
 GO TO PGM-EXIT.
 IOERR-SEC.
 MOVE IOERR-ERR TO CICS-MSG-AREA.
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
 GO TO PGM-EXIT.
 LENGERR-SEC.
 MOVE LENGERR-ERR TO CICS-MSG-AREA.
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
 GO TO PGM-EXIT.
 NOSPACE-ERR-SEC.
 MOVE NOSPACE-ERR TO CICS-MSG-AREA.
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
 GO TO PGM-EXIT.
 QIDERR-SEC.
 MOVE QIDERR-ERR TO CICS-MSG-AREA.
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
 GO TO PGM-EXIT.
 ITEMERR-SEC.
 MOVE ITEMERR-ERR TO CICS-MSG-AREA.
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
 GO TO PGM-EXIT.
 ENDDATA-SEC.
 MOVE ENDDATA-ERR TO CICS-MSG-AREA.
 PERFORM WRITE-CICS THRU WRITE-CICS-EXIT.
 GO TO PGM-EXIT.

D.3 MVS JCL to Compile COBOL Program
//CICSRS2C JOB (999,POK),’CICSRS2’,NOTIFY=CICSRS2,
// CLASS=A,MSGCLASS=T,TIME=1439,
// REGION=5000K,MSGLEVEL=(1,1)
//DFHEITVL PROC SUFFIX=1c,
// INDEX=’CICS330’,
// INDEX2=’CICS330’,
// OUTC=*,
228 Accessing CICS Business Applications from the WWW

// REG=2048K,
// LNKPARM=’LIST,XREF’,
// WORK=SYSDA
//TRN EXEC PGM=DFHECP&SUFFIX,
// PARM=’COBOL2’,
// REGION=®
//STEPLIB DD DSN=&INDEX2..SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC
//SYSPUNCH DD DSN=&&SYSCIN,
// DISP=(,PASS),UNIT=&WORK,
// DCB=BLKSIZE=400,
// SPACE=(400,(400,100))
//*
//COB EXEC PGM=IGYCRCTL,REGION=®,
// PARM=’NODYNAM,LIB,OBJECT,RENT,RES,APOST,MAP,XREF’
//STEPLIB DD DSN=COBOL.V1R3M2.COB2COMP,DISP=SHR
//SYSLIB DD DSN=&INDEX..SDFHCOB,DISP=SHR
// DD DSN=&INDEX..SDFHMAC,DISP=SHR
//SYSPRINT DD SYSOUT=&OUTC
//SYSIN DD DSN=&&SYSCIN,DISP=(OLD,DELETE)
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),
// UNIT=&WORK,SPACE=(80,(250,100))
//SYSUT1 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT2 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT3 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT4 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT5 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT6 DD UNIT=&WORK,SPACE=(460,(350,100))
//SYSUT7 DD UNIT=&WORK,SPACE=(460,(350,100))
//*
//LKED EXEC PGM=IEWL,REGION=®,
// PARM=’&LNKPARM’,COND=(5,LT,COB)
//SYSLIB DD DSN=&INDEX..SDFHLOAD,DISP=SHR
// DD DSN=SYS1.COBOL.V1R3M2.COB2CICS,DISP=SHR
// DD DSN=COBOL.V1R3M2.COB2LIB,DISP=SHR
// DD DSN=TCPIP.V2R2M1.SEZATCP,DISP=SHR
//SYSLMOD DD DSN=CICSRS2.CICS330.PGMLIB,DISP=SHR
//SYSUT1 DD UNIT=&WORK,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=&OUTC
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
// PEND
//APPLPROG EXEC DFHEITVL
//TRN.SYSIN DD DISP=SHR,DSN=CICSRS2.JCL.DATA(TCPSERV1)
//LKED.SYSIN DD *
 NAME TCPSERV1(R)
/*
CICS/ESA Sockets Application Sample 229

230 Accessing CICS Business Applications from the WWW

Appendix E. Special Notices

This publication is intended to help information technology professionals
responsible for designing and managing CICS-based Online Transaction
Processing (OLTP) applications, to help them make these applications available
to users of the Internet and the World Wide Web. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by the products mentioned in this book. See the
PUBLICATIONS section of the IBM Programming Announcement for these
products for more information about what publications are considered to be
product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM’s intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer’s ability to evaluate and integrate them into the
customer’s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.
© Copyright IBM Corp. 1998 231

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

AIX AIX/6000
AIXwindows BookManager
BookMaster C Set++
CICS CICS OS/2
CICS for Windows/NT CICS for OS/2
CICS/ESA CICS/MVS
CICS/VSE CICS/400
CICS/6000 DB2
DB2/2 Enterprise Systems Architecture/390
ESA/390 IBM
MQSeries MVS/ESA
OS/2 Presentation Manager
RACF RISC System/6000
RS/6000 S/390
System/390 VTAM

C++ American Telephone and Telegraph
Company, Incorporated

C-bus Corollary, Inc.
CyberCash CyberCash, Inc.
DCE, OSF Open Software Foundation
DEC, VT100 Digital Equipment Corporation
Encina Transarc Corporation
Gopher University of Minnesota
Intel, Pentium, MMX Intel Corporation
Java, Hot Java Sun Microsystems, Inc.
Kerberos, X Windows Massachusetts Institute of Technology
Lotus Notes Lotus Development Corporation.
NCSA Mosaic University of Illinois at Urbana Cham-

paign
Netscape Netscape Communications Corporation
Oracle Oracle Corporation
PostScript Adobe Systems, Inc.
SecureWeb Terisa Systems
Windows NT, and Windows 95 Microsoft Corporation
232 Accessing CICS Business Applications from the WWW

Appendix F. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

F.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How To Get ITSO
Redbooks” on page 235.

 • IBM Internet Connection Secure Server, SG24-4805

 • Building a Firewall With the NetSP Secured Network Gateway, SG24-2577

 • CICS Clients Unmasked, SG24-2534

 • CICS/ESA and TCP/IP for MVS Sockets Interface, GG24-4026

 • TCP/IP Tutorial and Technical Overview, GG24-3376-04

 • Using the Information Super Highway, SG24-2499

F.2 Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

F.3 Other Publications

These publications are also relevant as further information sources:

 • CICS/ESA Dynamic Transaction Routing in a CICSplex, SC33-1012

 • CICS Family: Client/Server Programming, SC33-1435

 • CICS Family: Communicating from CICS on System/390, SC33-1697

 • CICS Internet and External Interfaces Guide, SC33-1944

 • Internet Cryptography, ISBN 0-20192-480-3

 • Priciples of Transaction Processing, ISBN 1-55860-415-4

 • Web Gateway Tools, ISBN 0-47117-555-2

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042
© Copyright IBM Corp. 1998 233

234 Accessing CICS Business Applications from the WWW

How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks
Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

 • PUBORDER – to order hardcopies in United States

 • GOPHER link to the Internet – type GOPHER WTSCPOK.ITSO.IBM.COM

 • Tools disks

To get LIST3820s of redbooks, type one of the following commands:

 TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
 TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get lists of redbooks:

 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
 TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO:

 TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

 • Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks

 • IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

 • REDBOOKS category on INEWS

 • Online – send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

 • Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

How Customers Can Get ITSO Redbooks
Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

Redpieces
© Copyright IBM Corp. 1998 235

 • Online Orders (Do not send credit card information over the Internet) – send orders to:

 • Telephone orders

 • Mail Orders – send orders to:

 • Fax – send orders to:

 • 1-800-IBM-4FAX (United States) or (+1) 408 256 5422 (Outside USA) – ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

 • Direct Services – send note to softwareshop@vnet.ibm.com

 • On the World Wide Web

 • Internet Listserver

With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

In United States
In Canada
Outside North America

IBMMAIL
usib6fpl at ibmmail
caibmbkz at ibmmail
dkibmbsh at ibmmail

Internet
usib6fpl@ibmmail.com
lmannix@vnet.ibm.com
bookshop@dk.ibm.com

United States (toll free)
Canada (toll free)

1-800-879-2755
1-800-IBM-4YOU

Outside North America
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(long distance charges apply)
(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-800-267-4455
(+45) 48 14 2207 (long distance charge)

Redbooks Web Site
IBM Direct Publications Catalog

http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl

For information so current it is still in the process of being written, look at "Redpieces" on the Redbooks Web Site
(http://www.redbooks.ibm.com/redpieces.html). Redpieces are redbooks in progress; not all redbooks become
redpieces, and sometimes just a few chapters will be published this way. The intent is to get the information out
much quicker than the formal publishing process allows.

Redpieces
236 Accessing CICS Business Applications from the WWW

IBM Redbook Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
 237

238 Accessing CICS Business Applications from the WWW

Glossary

There is an excellent glossary of Internet and Internet
related terms available at URL:

http://www.matisse.net/files/glossary.html

Other terms not covered in the above-mentioned Web
document or clarified for the context of this document
are listed below:

Anchor. An HTML element that defines a link
between Internet resources.

abend. Abnormal end of task.

API. Application programming interface. A set of
calling conventions defining how a service is invoked
through a software package.

APPC. Advanced program-to-program
communication. An implementation of the SNA LU 6.2
protocol that allows interconnected systems to
communicate and share the processing of programs.

asynchronous. Without regular time relationship;
unexpected or unpredictable with respect to the
execution of program instructions. See synchronous.

Browser. An application that displays World Wide
Web documents.

CERN. The Conseil Europeen pour la Recherche
Nucleaire (European Particle Physics Laboratory),
which developed hypertext technologies.

Distributed program link (DPL) enables an
application program executing in one CICS system to
link (pass control) to a program in a different CICS
system. The linked-to program executes and returns a
result to the linking program. This process is
equivalent to remote procedure calls (RPCs). You can
write applications that issue RPCs that can be
received by members of the CICS family.

Distributed transaction processing enables a
transaction running in one CICS system to
communicate synchronously with transactions running
in other systems. The transactions are designed and
coded specifically to communicate with each other.
This method is typically used by banks, for example in
"just-in-time" stock replacement.

Customer Information Control System (CICS). A
distributed online transaction processing system
designed to support a network of many terminals. The
CICS family of products is available for a variety of
platforms ranging from a single workstation to the
largest mainframe.

client. As in client/server computing, the application
that makes requests to the server and, often, handles
with the interaction necessary with the user.

client/server computing. A form of distributed
processing, in which the task required to be processed
is accomplished by a client portion that requests
© Copyright IBM Corp. 1998
services and a server portion that fulfills those
requests. The client and server remain transparent to
each other in terms of location and platform. See client
and server.

commit. An action that an application takes to make
permanent the changes it has made to CICS
resources.

Common Gateway Interface (CGI). The defined
standard for the communications between HTTP
servers and external executable programs.

conversational. A communication model where two
distributed applications exchange information by way
of a conversation; typically one application starts (or
allocates) the conversation, sends some data, and
allows the other application to send some data. Both
applications continue in turn until one decides to finish
(or deallocate). The conversational model is a
synchronous form of communication.

database. (1) A collection of interrelated data stored
together with controlled redundancy according to a
scheme to serve one or more applications. (2) All data
files stored in the system. (3) A set of data stored
together and managed by a database management
system.

DCE. Distributed Computing Environment. Adopted
by the computer industry as a de facto standard for
distributed computing. DCE allows computers from a
variety of vendors to communicate transparently and
share resources such as computing power, files,
printers, and other objects in the network.

Delimiter. A character or sequence of characters
used as a separator in text or data files.

distributed processing. Distributed processing is an
application or systems model in which function and
data can be distributed across multiple computing
resources connected on a LAN or WAN. See
client/server computing.

DPL. Distributed program link. Provides a mechanism
similar to remote procedure call (RPC) by function
shipping EXEC CICS LINK commands. In CICS/6000,
DPL allows the linked-to program to issue unsupported
CICS/6000 function-shipping calls, such as to DB2 and
DL/I, and yields performance improvements for
transactions that read many records from remote files.

DTP. Distributed transaction processing. A type of
intercommunication in CICS. The processing is
distributed between transactions that communicate
synchronously with one another over intersystem links.
DTP enables a CICS application program to initiate
transaction processing in a system that supports LU
6.2 and resides in the same or a different processor.

ECI. External call interface. An application
programming interface (API) that enables a non-CICS
 239

client application to call a CICS program as a
subroutine. The client application communicates with
the server CICS program using a data area called a
COMMAREA.

EPI. External presentation interface. An application
programming interface (API) that allows a non-CICS
application program to appear to the CICS system as
one or more standard 3270 terminals. The non-CICS
application can start CICS transactions and send and
receive standard 3270 data streams to those
transactions.

environment. The collective hardware and software
configuration of a system.

File Transfer Protocol (FTP). A protocol that defines
how to transfer files from one computer to another.

Forms. Parts of HTML documents that allow users to
enter data.

Function shipping enables an application program
running in one CICS system to access resources
owned by another CICS system. In the
resource-owning system, a transaction is initiated to
perform the necessary operation; for example, to
access CICS files or temporary storage, and to reply to
the requester. The user is unaware of these
"behind-the-scenes" activities, and need not know
where the resource actually exists.

Gateway. Software that transfers data between
normally incompatible applications or between
networks.

Gopher. Menu-based software for exploring Internet
resources.

Graphic Interchange Format (GIF). 256-color
graphic format.

GUI. Graphical user interface. A style of user
interface that replaces the character-based screen
with an all-points-addressable, high-resolution
graphics screen. Windows display multiple
applications at the same time and allow user input by
means of a keyboard or a pointing device such as
mouse, a pen, or a trackball.

home page. The default page shown at the first
connection to an HTTP server.

host. (1) In a computer network, a computer
providing services such as computation, database
access, and network control functions. (2) In a multiple
computer installation, the primary or controlling
computer.

hypertext. Text that activates connection to other
documents when selected.

Hypertext Markup Language (HTML). Standard
language used to create hypertext documents.

Hypertext Transmission Protocol (HTTP).
Standard WWW client/server communications
protocol.

Internet Keyed Payment Protocol (iKP). Proposed
protocol for conducting secure commercial financial
transactions on the Internet.

intercommunication. Communication between
separate systems by means of Systems Network
Architecture (SNA), Transmission Control
Protocol/Internet Protocol (TCP/IP), and Network
Basic Input/Output System (NetBIOS) networking
facilities.

Internet. A collection of networks.

LU type 6.2 (LU 6.2). A type of logical unit used for
CICS intersystem communication (ISC). LU 6.2
architecture supports CICS host-to-system-level
products and CICS host-to-device-level products.
APPC is the protocol boundary of the LU 6.2
architecture.

LUW. Logical unit of work. An update that durably
transforms a resource from one consistent state to
another consistent state. A sequence of processing
actions (for example, database changes) that must be
completed before any of the individual actions can be
regarded as committed. When changes are committed
(by successful completion of the LUW and recording of
the synch point on the system log), they do not need to
be backed out after a subsequent error within the task
or region. The end of an LUW is marked in a
transaction by a synch point that is issued by either the
user program or the CICS server, at the end of task. If
there are no user synch points, the entire task is an
LUW.

markup tag. Special character sequences put in text
used to pass information to a tool, such as a document
formatter.

NCSA Mosaic. A Web browser available on multiple
platforms.

Multipurpose Internet Mail Extension (MIME). The
Internet standard for mail that supports text, images,
audio, and video.

online transaction processing (OLTP). A style of
computing that supports interactive applications in
which requests submitted by terminal users are
processed as soon as they are received. Results are
returned to the requester in a relatively short period of
time. An online transaction processing system
supervises the sharing of resources to allow efficient
processing of multiple transactions at the same time.

PostScript. The standard for presenting text and
graphics in a device-independent format.

protocol. (1) A formal set of conventions governing
the format and control of data. (2) A set of procedures
or rules for establishing and controlling transmissions
from a source device or process to a target device or
process.

Proxy. A gateway that allows Web browsers to pass
on a network request (a URL) to an outside agent.
240 Accessing CICS Business Applications from the WWW

pseudoconversational. A type of CICS application
design that appears to the user as a continuous
conversation but consists internally of multiple tasks.

recovery. The use of archived copies to reconstruct
files, databases, or complete disk images after they
are lost or destroyed.

recoverable resources. Items whose integrity CICS
maintains in the event of a system error. These include
individual files and queues.

script. An executable program invoked by HTTP
servers.

server. Any computing resource dedicated to
responding to client requests. Servers can be linked to
clients through LANs or WANs to perform services,
such as printing, database access, fax, and image
processing, on behalf of multiple clients at the same
time.

Socket Secure (SOCKS). The gateway that allows
compliant client code (client code made socket secure)
to establish a session with a remote host.

Standard Generalized Markup Language (SGML).
The standard that defines several markup languages,
HTML included

synchronous. (1) Pertaining to two or more
processes that depend on the occurrence of a specific
event such as a common timing signal. (2) Occurring
with a regular or predictable time relationship.

synchpoint. A logical point in execution of an
application program where the changes made to the
databases by the program are consistent and
complete and can be committed to the database. The
output, which has been held up to that point, is sent to
its destination, the input is removed from the message
queues, and the database updates are made available
to other applications. When a program terminates
abnormally, CICS recovery and restart facilities do not
back out updates prior to the last completed
synchpoint.

transaction. A unit of processing (consisting of one
or more application programs) initiated by a single
request. A transaction can require the initiation of one
or more tasks for its execution.

transaction processing. A style of computing that
supports interactive applications in which requests
submitted by users are processed as soon as they are
received. Results are returned to the requester in a
relatively short period of time. A transaction
processing system supervises the sharing of
resources for processing multiple transactions at the
same time.

Transaction routing enables a terminal connected to
one CICS system to run a transaction in another CICS
system. It is common for CICS/ESA, CICS/VSE, and
CICS/MVS users to have a terminal-owning region
(TOR) that "owns" end-user network resources, an

application-owning region (AOR) that owns user
transactions and programs, and a resource-owning
region (ROR) that owns data resources. These
resources can include files, temporary storage queues,
and transient data queues, and may have access to
database managers such as DBCTL or DB2.

Uniform Resource Locator (URL). Standard to
identify resources on the World Wide Web

WebExplorer. OS/2 Web browser.

workstation. A configuration of input/output
equipment at which an operator works. A terminal or
microcomputer, usually one that is connected to a
mainframe or a network, at which a user can perform
applications.

World Wide Web (WWW or W3). A graphic
hypertextual multimedia Internet service.

X-Windows Systems. Network-based windowing
system originally developed by the Massachusetts
Institute of Technology (MIT).
 241

242 Accessing CICS Business Applications from the WWW

List of Abbreviations

ACF access control file

ACL access control list

AIX Advanced Interacrtive
eXecutive

APA all points addressable

API application programming
interface

APPC Advanced
Program-to-Program
Communication

ASCII American National Standard
Code for Information
Interchange

BMS basic mapping support

CERN Conseil Europeen pour la
Recherche Nucleaire
(European Laboratory for
Particle Physics)

CGI Common Gateway Interface

CICS Customer Information Control
System

CM/2 Communications Manager/2

COMMAREA communication area

CSD CICS system definition

DCE Distributed Computing
Environment

DEC Digital Equipment Corporation

DNS Domain Name Server

DOS Disk Operating System

DPL distributed program link

DTP distributed transaction
processing

ECI external call interface

EPI external presentation
interface

ESA Enterprise Systems
Architecture

EXCI external CICS interface

FAT file allocation table

FTP File Transfer Protocol

GIF graphic interchange format

HPFS High Performance File
System

HTML Hypertext Markup Language
© Copyright IBM Corp. 1998
HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IETF Internet Engineering Task
Force

iKP Internet Keyed Payment
Protocol

IP Internet Protocol

ISC intersystem communication

ITSO International Technical
Support Organization

LAN local area network

LUW logical unit of work

MIME Multipurpose Internet Mail
Extension

NCSA National Center of
Supercomputing Applications

OLTP online transaction processing

ONC RPC Open Network Computing
Remote Procedure Call

OS/2 Operating System/2

OSF Open Software Foundation
Inc.

PGP Pretty Good Privacy

PIN personal identification number

PM Presentation Manager

POP Post Office Protocol

RACF Resource Access Control
Facility

RPC remote procedure call

SET Secure Electronic Transaction

S-HTTP Secure Hypertext Transfer
Protocol

SGML Standard Generalized Markup
Language

SMTP Simple Mail Transfer Protocol

SNA Systems Network Architecture

SNT sign-on table

SOCKS socket secure

SSL Secure Socket Layer

TCP/IP Transmission Control
Protocol/Internet Protocol

TOR terminal owning region
 243

TRUE task-related user exit

URI Uniform Resource Identifier

URL Uniform Resource Locator or
Universal Resource Locator

WWW World Wide Web

WYSIWYG What-you-see-is-what-you-get

W3 World Wide Web (mostly used
for Intranet declaration).
244 Accessing CICS Business Applications from the WWW

Index

Numerics
3270 applications 92

A
access control file 19
access control list 19
Access Security 16
ACF 19
ACL 19
ACTION 67
APPC 90, 93
Applet 6
ASCII 144
Atomicity 9
auditing 106
Authentication 20
availability 13

C
caching 76
CERN 4, 19
CGI 5, 33, 128
CGI script

CERN 40
CGIPARSE 44, 76
CGIUTILS 75
command line 45
C-Program 42
decoding input 44
environment variables 42
getenv function 42
invoking 40, 129
language 40
MIME 44
NCSA 40
packur 44
parsing 40
passing data 42
performance 44, 75, 76
REXX-Program 43
standard input 44
string handling 40

CGI scripts 39
CGIPARSE 44, 76
CGIUTILS 75
CICS COMMAREA 12
CICS Internet Gateway 89
CICS servers 91
CICS Transaction 10
CICSSTAT 145
CICSWEB 135
client/server 3, 4
COMMAREA 126, 133

and CICSWEB 142, 143
and data conversion 144
and ECITEST 127
© Copyright IBM Corp. 1998
Web server calling CICS applications 94
common gateway interface 5, 33, 128
Configering CICS Gateway for Java on AIX 116

Configuration 117
Directory Structure 117
Installation 116
JGate 118
Starting 118
Stopping 119

Configering CICS Gateway for Java on MVS 109
Background 115
Configuration 112
DFHJAVA Group 112
Environment Variables 112, 114
EXCI Communication 112
Installation 109
JCL startup 113
nohup 115
Running 115

connectivity 125
ECI 81
EPI 81
using APPC 90
using CICS family 81
using CICS servers 91
using DCE 90
using MQ Series 90
using ONC RPC 90
using remote procedure call 90
using sockets 89
using TCP/IP for MVS 89

Consistency 9
conversion 103
CORBA 5
CyberCash 27

D
daemon 3
data conversion 103, 144
data currency 12
data integrity 11, 97
Data Security 13
DCE 25, 90
DCE RPC 94
deadlock detection 11
DES 22, 24
DFHCNV 144
digital certificate 55
Distributed Computing Environment 25
distributed program link 144
DPL 94
Durability 10
dynamic HTML documents 133, 143

E
EBCDIC 140, 144
ECI 125
245

passing data to and from CICS 133
using and extended logical unit of work 142
using DPL to access CICS/ESA applications 94

ECITEST 125
EIT 26
encryption 21, 25

Certificates 23
Certificates Authority 24
Digital Envelope 24
Digital Signature 23
Hash Function 23
Public Key 22
SSL 24
Symetric Key 22

Enterprise JavaBeans 6
environment variables 42

CONTENT_LENGTH 44, 45
CONTENT_TYPE 44
QUERY_STRING 67

EXCI 94

F
filter 130
firewall 16

logging 20
proxy 18
SOCKS 19
trusted network 17
untrusted network 17

forms 5, 131
ACTION 67
field 67
GET 67, 131
hidden fields 69
invoking the Web server CGI script 130
METHOD 67, 131
POST 67, 131
programming 68
state 69
variable names 131

FTP 3

G
GET 67
getenv 42
GML 40
Gopher 3
GoServe 128, 130, 135

filter 41
invoking 41

GoServe filter
invoking 130

H
hidden fields 69
HTML 5, 66, 68, 128

forms 67
tags 66, 67

HTML tags 40
 135
FORM 131

HTML-aware 68, 92, 144
HTTP 5, 128
HTTP header 35

and caching 76
and generating dynamic HTML documents 133
authenticathion 21
CGIUTILS 75
Entity header fields 38

Allow 38
Content Encoding 38
Content-Base 38
Content-Language 38
Content-Length 38
Content-Location 39
Content-MD5 39
Content-Range 39
Content-Type 39
ETag 39
Expires 39
Last-Modified 39

General header fields 35
Cache-Control 35
Connections 35
Date 35
Pragma 35
Transfer-Encoding 35
Upgrade 36
Via 36

Request header fields 36
Accept 36
Accept-Charset 36
Accept-Encoding 36
Accept-Language 36
Authorization 36
From 36
Host 37
If-Match 37
If-Modified-Since 37
If-Non-Match 37
If-Range 37
Max-Forwards 37
Proxy-Authorization 37
Range 37
Referer 36
User-Agent 36

Response header fields 37
Age 37
Location 37
Proxy-Authenticate 38
Public 38
Retry-After 38
Server 38
Vary 38
Warnings 38
WWW-Authenticate 38

HTTP protocol 21
246 Accessing CICS Business Applications from the WWW

I
IBM 26
IBM Internet Connection Server 135
iKP 26
Isolation 10

J
Java 6, 47

Beans 49
HelloWorld.java 48
Java Applets 47
Java Applications 49
local gateway connection 49
network gateway connection 49
Signed Java Applets 58

Java Applets 47
Java Application Security 61
Java Applications 49
Java Security 28, 49

Accountability 58
Authenticity 57
Class Loader 29
Digital Certificate 55
Extended Java Security Facilities 29
HotJava 53
Integrity 58
Microsoft Internet Explorer Security Zone System 52
Netscape Capabilities API 51

principles 52
PrivilegeManager 51

Obtaining Digital Certificates 58
Sandbox 29, 50
Security Features 50
Security Manager 29
Veryfier 29

Java Virtual Machine 6
JavaBeans 6
javakey 58
JVM 6

K
Kerberos 25

L
logging 11, 20, 106
logical unit of work 97, 142
LUW 142

M
Mail 3
makecert 58
METHOD 67
Microsoft Internet Explorer 4
MIME 44, 142
Mosaic 4
MQ Series 90

N
NCSA 4, 19
Netscape 4

Secure Sockets Layer 24
SecureWeb 26

network management 12
News 3

O
OLTP 9
ONC RPC 90, 94
Open Software Foundation 25
OSF 25

P
packur 44
performance

and CGIPARSE 76
and CGIUTILS 75
minimizing network data traffic 143
using CGIPARSE 44
using shared storage 151

PGP 25
POST 67
Pretty Good Privacy 25
proxy 18
proxy server 104

caching 76
Proxy servers 17
pseudoconversational processing 94

R
remote procedure call 90
REXX 128
RMI 7
RPC 90, 94
rxcics 133, 142
RXSOCK 90

S
Sandbox 29
screenscraping 92
secure HTTP 25
Secure Sockets Layer 24
secure web server 106
SecureWeb 26
security 15, 72, 77, 104

access control 19
access control file 19
access control list 19
access security 16
ACF 19
ACL 19
CyberCash 27
data security 13
digital certificate 55
encryption 21, 25
 247

filter 18
iKP 26
Kerberos 25
logging 20
password validation 143
passwords 20
PGP 25
policy 15
Pretty Good Privacy 25
proxy 18
risks 15
secure HTTP 25
Secure Internet Payment Service 27
Secure Sockets Layer 24
SecureWeb 26
S-HTTP 25, 106
SOCKS 19
SSL 24, 106
transaction security 16, 20

SEPP 27
Server components 6
SET 27
SGML 5, 40
shared storage 151
S-HTTP 16, 25, 26, 106
SHTTP 25
sockets 89, 93, 153
SOCKS 19
SOCKS server 104
SOCKS servers 17
SSL 24, 26, 106
standard input 44
state 11, 69, 77, 98, 101, 132, 134, 145
state management 101
stateless 11
STT 27
synchronisation point 10
syncpoint 10
systems management 103

T
tags 66
task-related user exit 102
task-related user exit (TRUE) 152
TCP/IP 3, 16

architecture 16
layers 16

TCP/IP for MVS 89
TCP/IP Layers 16
Telnet 3
temporary storage 12, 99, 145
Terisa Systems 26
TestECI 109, 119
TestEPI 121
timeout 101
topping and tailing 101
transaction 9
transaction backout 11
transaction routing 103
Two Phase Commit 10

U
Uniform Resource Locator 5, 33
UNIX 3
UOW 10
URL 5, 33

port 34
service 34

user interface 11

W
Web browser 4
Web Server 4
Web server 33

CERN 33
configuration 40
gateway 127, 129, 141
GoServe 33
NCSA 33
performance 40
server mapping directives 40

World Wide Web 3
WWW 4

X
XML 5
XPCREQ 104
XPCREQC 104
248 Accessing CICS Business Applications from the WWW

© Copyright IBM Corp. 1998 249

ITSO Redbook Evaluation

Accessing CICS Business Applications from the World Wide Web
SG24-4547-02

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

 • Use the online evaluation form found at http://www.redbooks.ibm.com
 • Fax this form to: USA International Access Code + 1 914 432 8264
 • Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

S
G

24
-4

54
7-

02

P
ri

n
te

d
 in

 t
h

e
U

.S
.A

.

Accessing CICS Business Applications from the World Wide Web SG24-4547-02

	Contents
	Figures
	Tables
	Preface
	How This Document Is Organized
	The Team That Wrote This Redbook
	1. and 2. Edition
	3. Edition

	Comments Welcome

	Chapter 1. Introducing the Web
	Chapter 2. Transaction Processing and the Web
	2.1 What is a Transaction Program?
	2.1.1 General Explanation
	2.1.2 Two-Phase Commit
	2.1.3 CICS Transaction

	2.2 User Expectation
	2.3 User Interface
	2.4 Data Integrity
	2.5 Matters of State
	2.6 Data Currency
	2.7 Getting Started with the Infrastructure
	2.8 Network Management
	2.9 The Importance of Being Available
	2.10 Data Security

	Chapter 3. Security
	3.1 TCP/IP Layers
	3.2 Access Security
	3.2.1 Firewalls
	3.2.2 Filters
	3.2.3 Proxy Servers
	3.2.4 SOCKS Servers
	3.2.5 Access Control List Files
	3.2.6 Logging

	3.3 Transaction Security
	3.3.1 Authentication
	3.3.2 Encryption Techniques
	3.3.3 Other important Security Terms
	3.3.4 Secure Sockets Layer
	3.3.5 Secure Hypertext Transfer Protocol
	3.3.6 Pretty Good Privacy
	3.3.7 Kerberos

	3.4 Commercial Activities on the Web
	3.4.1 SecureWeb
	3.4.2 Internet Keyed Payment Protocol
	3.4.3 Secure Internet Payment Service
	3.4.4 Secure Electronic Payment Protocol
	3.4.5 Secure Transaction Technology
	3.4.6 Secure Electronic Transaction

	3.5 Java Security
	3.5.1 Security Implications while Distributing Executable Code
	3.5.2 The Java Security Features

	Chapter 4. Programming for the Web
	4.1 Using Uniform Resource Locators
	4.2 Hypertext Transfer Protocol Header Information
	4.2.1 General Header Fields
	4.2.2 Request Header Fields
	4.2.3 Response Header Fields
	4.2.4 Entity Header Fields

	4.3 Common Gateway Interface Scripts
	4.3.1 Invoking Common Gateway Interface Scripts
	4.3.2 Passing Data to Common Gateway Interface Scripts

	4.4 Internet Connection Application Programming Interface ICAPI
	4.4.1 The Service Directive

	4.5 Java
	4.5.1 What Is Java?
	4.5.2 Java Applets
	4.5.3 Java Applications
	4.5.4 Java Beans

	4.6 Java Security
	4.6.1 Java Security Features
	4.6.2 Leaving the Sandbox
	4.6.3 The Netscape Capabilities API
	4.6.4 Microsoft Internet Explorer Security Zone System
	4.6.5 The HotJava Security Model
	4.6.6 Digital Certificates
	4.6.7 Java Application Security
	4.6.8 Security Features in Java 1.2
	4.6.9 Summary
	4.6.10 References

	4.7 JavaScript
	4.7.1 JavaScript - Java Comparison
	4.7.2 Embedding JavaScript into HTML

	4.8 Hypertext Markup Language
	4.8.1 Forms

	4.9 Utility CGIUTILS
	4.10 Utility CGIPARSE
	4.11 Caching

	Chapter 5. Accessing CICS/ESA from the Web
	5.1 Connecting CICS to the Internet
	5.1.1 EXCI CGI Sample Program
	5.1.2 CICS Internet Gateway
	5.1.3 CICS Gateway for Java
	5.1.4 CICS Web Interface

	5.2 CICS Access Overview
	5.2.1 CICS/ESA direct Web Connection Solutions
	5.2.2 The CICS Gateway for Java
	5.2.3 The CICS Internet Gateway
	5.2.4 Other Ways to Access CICS/ESA
	5.2.5 CICS Servers

	5.3 Designing CICS/ESA Applications for the Web
	5.3.1 Accessing CICS/ESA 3270 Applications
	5.3.2 HTML Awareness
	5.3.3 Using APPC or TCP/IP Sockets to Access CICS/ESA Applications
	5.3.4 Using DPL to Access CICS/ESA Applications

	5.4 Writing CICS/ESA Programs for the Web
	5.4.1 Pseudoconversation Initiation
	5.4.2 Passing Input Data to the Server
	5.4.3 Returning Responses from CICS/ESA
	5.4.4 Terminating the Pseudo-conversation
	5.4.5 Specifying the Next CICS/ESA Program to Execute
	5.4.6 Detecting Interruption to the Pseudo-conversation
	5.4.7 Data Integrity
	5.4.8 Saving Information about the State of Processing
	5.4.9 Data Conversion

	5.5 CICS/ESA Systems Management Considerations
	5.5.1 Routing of Web Requests
	5.5.2 Workload Management
	5.5.3 CICS/ESA Security
	5.5.4 Logging and Auditing

	Chapter 6. TestECI/TestEPI on CICS Gateway for Java
	6.1 CICS Gateway for Java Scenario
	6.2 Configuring the CICS Gateway for Java on MVS
	6.2.1 Installation
	6.2.2 Configuration of the CICS Gateway for Java
	6.2.3 Installing the DFHJAVA Group
	6.2.4 Configuring CICS Connection and Sessions
	6.2.5 Setting Environment Variables
	6.2.6 Environment Variables Used by the CICS Gateway for Java (MVS)
	6.2.7 Running the CICS Gateway for Java (MVS)

	6.3 Configuring the CICS Gateway for Java on AIX
	6.3.1 Installation
	6.3.2 Configuration
	6.3.3 Starting the CICS Gateway for Java on AIX
	6.3.4 Stopping the CICS Gateway for Java

	6.4 TestECI
	6.4.1 Running TestECI

	6.5 TestEPI
	6.5.1 Running TestEPI

	Chapter 7. Connectivity Tester: ECITEST
	7.1 What Does ECITEST Do?
	7.2 ECITEST Components and Interfaces
	7.3 ECITEST Function Description
	7.3.1 Invoking an Application-Specific Web Server Extension or Gateway
	7.3.2 Obtaining User Input from the Web Browser
	7.3.3 Maintaining Information about the State of Processing
	7.3.4 Passing Data to and from CICS
	7.3.5 Generating Dynamic HTML Documents
	7.3.6 Deleting Information about the State of Processing

	Chapter 8. A Simple CICS Access Program: CICSWEB
	8.1 What Does CICSWEB Do?
	8.1.1 CICSWEB Object Retrieval Function
	8.1.2 CICSWEB Administration Function

	8.2 CICSWEB Components and Interfaces
	8.3 CICSWEB Function Description
	8.3.1 Adding Data to CICS Databases
	8.3.2 Using an Extended Logical Unit of Work
	8.3.3 Retrieving Data from CICS Databases
	8.3.4 Minimizing Network Data Traffic
	8.3.5 Using CICS User ID and Password for Validation
	8.3.6 Generating HTML Directly from a CICS Application
	8.3.7 Managing Data Conversion

	Chapter 9. CICS State Management Program: CICSSTAT
	9.1 How Is CICSSTAT Invoked?
	9.2 What Does CICSSTAT Do?
	9.2.1 CICSSTAT Single-Threading
	9.2.2 The CICSSTAT Anchor Block
	9.2.3 CICSSTAT COMMAREA Structure
	9.2.4 Creating a State Block
	9.2.5 CICSSTAT Create Function
	9.2.6 CICSSTAT Retrieve Function
	9.2.7 CICSSTAT Store Function
	9.2.8 CICSSTAT Destroy Function

	9.3 CICSTAT Routines
	9.3.1 CICSSTAT Timeout Processing
	9.3.2 CICSSTAT Purge Processing
	9.3.3 CICSSTAT Error Handling

	9.4 Sample Scenario Using CICSSTAT
	9.4.1 Error Handling
	9.4.2 Why Use Shared Storage Rather than Temporary Storage?

	Chapter 10. CICS Sockets Sample
	10.1 SOCKTEST Environment
	10.1.1 Connectivity Scenario

	10.2 What Does SOCKTEST Do?
	10.2.1 Generating Dynamic HTML Documents

	10.3 SOCKTEST Sample Programs Management
	10.3.1 Building the SOCKTEST Sample Programs
	10.3.2 Running the SOCKTEST Sample Programs

	10.4 Information about the State of Processing for SOCKTEST

	Appendix A. ECITEST Source Listings
	A.1 ECITEST.HTML: Login HTML Document for Use with the IBM Internet Connection Server
	A.2 ECITEST.HTM: Login HTML Document for Use with GoServe
	A.3 ECITEST.CMD: REXX CGI Script for Use with the IBM Internet Connection Server
	A.4 ECITEST.80: REXX Filter for Use with GoServe

	Appendix B. CICSWEB Source Listings
	B.1 CICSWEB.HTML: Login HTML Document for Use with the Domino Go Webserver
	B.2 CICSWEB.HTM: Login HTML Document for Use with GoServe
	B.3 CICSWEB.CMD: REXX CGI Script for Use with the IBM Internet Connection Server
	B.4 CICSWEB.80: REXX Filter for Use with GoServe
	B.5 CICS COBOL Program to Store, Retrieve, and Delete Objects
	B.6 CICS COBOL Program to List Objects
	B.7 CICS Data Conversion Table
	B.8 VSAM File Definition

	Appendix C. CICS/ESA State Management Sample
	C.1 REXX CGI Script
	C.2 COBOL CICS/ESA Web Server Application Program
	C.3 Assembler CICS/ESA State Management Program

	Appendix D. CICS/ESA Sockets Application Sample
	D.1 C CGI Script
	D.1.1 client.c
	D.1.2 sockets.c

	D.2 COBOL CICS/ESA Web Server Application Program
	D.3 MVS JCL to Compile COBOL Program

	Appendix E. Special Notices
	Appendix F. Related Publications
	F.1 International Technical Support Organization Publications
	F.2 Redbooks on CD-ROMs
	F.3 Other Publications

	How To Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	List of Abbreviations
	Index
	ITSO Redbook Evaluation

